The Design of an Independent Power Supply Applied to the Isolated Island

2012 ◽  
Vol 614-615 ◽  
pp. 1759-1765
Author(s):  
Yi Cheng Chen ◽  
Zhi Xin Wang

This article aims to make a design of the power supply for an isolated island that has difficulty in realizing the connection with the mainland power grid. An independent hybrid power system consisting of varieties of renewable power sources including solar power, wind power, wave energy and batteries are introduced. This system is dedicated to make the forecast of the electricity load of the island according to the environmental factors and the electricity demand of the island. Then it builds the basic framework and models of hybrid power system on the basis of the forecast and finds out the appropriate method to optimize the power supply.

2013 ◽  
Vol 448-453 ◽  
pp. 2326-2334 ◽  
Author(s):  
Yan Ping Li ◽  
Li Liu ◽  
Xiao Hui Zhang ◽  
Shang Tao Shi ◽  
Chang Wei Guo

As the aviation has realized the seriousness of pollution and emission issues, people have taken efforts to use renewable energy on planes or UAVs. This paper focused on the applications of solar and hydrogen energy to UAVs. A hybrid power system, consisting of solar cells, fuel cells and lithium batteries, was discussed. To achieve the hybridization of power sources, a prototype of a power management unit (PMU) was fabricated. After the installation of a test system for synthesizing power sources, PMU and load, a series of ground tests were executed to verify the mathematical model of lithium battery and the reliability of the hardware. Ground data confirmed the feasibility of hybrid power system.


2020 ◽  
Vol 12 (11) ◽  
pp. 168781402096692
Author(s):  
Po-Tuan Chen ◽  
Cheng-Jung Yang ◽  
K David Huang

A fuzzy control strategy is developed in this study to manage the parallel hybrid power system of internal combustion engine (ICE) and electric motor (EM) for hybrid vehicles. The rules established for the fuzzy logic are based on the conditions of vehicle pedal position, vehicle velocity, and the state of charge to control the throttle position of the ICE and the switch position of EM in low-, mid-, and high-power cruising. The optimization of the control strategy can make vehicles achieving ECE 40 driving pattern. In addition, the ICE can work in an optimal operation range, thus reducing carbon emission. The EM may provide power according to the demand, such that the torque output of the output shaft of the power split device is twice of the input of the two power sources separately.


2014 ◽  
Vol 541-542 ◽  
pp. 892-897 ◽  
Author(s):  
Peng Fei Yi ◽  
Jian Zhang ◽  
Zhao Yuan Zhang

This paper built a hybrid power system, including wind power, PV power and hydro power generation. It is presented mathematical model for the optional design of hybrid power system. The object of the model are to minimize the initial investment cost, power supply reliability and power complementation. The constraint condition are included system working, installed capacity and load balance, So the capacity matching model is established. A stand-alone photovoltaic of pasturing area is calculated by using the model. The result shows that the optional design model have an important sense, which improved power supply reliability, complementary characteristics of hybrid power and reduce the total cost of the system.


2013 ◽  
Vol 768 ◽  
pp. 398-403
Author(s):  
Jagriti Narayan ◽  
R. Johnson Uthayakumar

A new three input DC-DC boost converter fed symmetrical multilevel inverter is proposed. The converter interfaces two unidirectional input power ports and a bidirectional port to battery in a unified structure. This converter uses hybrid alternative energy source such as Photo Voltaic (PV) source, Fuel Cell (FC) source, and Battery. Supplying the output load, charging or discharging the battery can be made by the PV and the FC power sources individually or simultaneously. The proposed structure utilizes only four power switches that are independently controlled with four different duty ratios. Proposed inverter uses two cells for five level output. Boost converter provided hybrid sources to multilevel inverter. Here we promote inverter for attain a pure sinusoidal harmonics free ac application.Key Words-Photovoltaic/fuel cell (PV/FC)/battery hybrid power system, three-input dcdc boost converter.


2012 ◽  
Vol 2012 ◽  
pp. 1-13
Author(s):  
Salem Zerkaoui

This paper presents the basis for the development of an intelligent and autonomous energy management strategy for hybrid power system (HPS). Two hierarchical levels are proposed to control and manage the HPS. The low level is performed by a local control unit (DC-DC converters controller) of the different power sources. Dynamic equations describing the coupling of converters are derived, and a robust sliding mode dynamic controller is designed. The high level is performed by the online supervisor unit. This unit is designed by applying on-line Takagi-Sugeno fuzzy logic principles. As a result the robust control system gets rid of the limits of the HPS, which has the imprecision, uncertainty, strong coupling, and nonlinearity, to achieve its tractability, robustness, and low solution cost. Under the operation constraints related to each type of sources, the simulation results show that the optimal operation objective of HPS has been achieved.


2018 ◽  
Vol 6 (3) ◽  
pp. 193-213 ◽  
Author(s):  
Jiaping Xie ◽  
Weisi Zhang ◽  
Yu Xia ◽  
Ling Liang ◽  
Lingcheng Kong

Abstract In the existing electricity market, the traditional power suppliers and renewable energy generators coexist in the power supply side. In the power supply side, renewable energy generators generate power by wind and other natural conditions, leading renewable energy output a certain randomness. However, the low marginal generating cost and the reduction of carbon emissions, and thus brings a certain advantage for renewable energy compared to alternative energy. Electricity, as a special commodity, stable and adequate power supply is a necessary guarantee for economic and social development. Power shortage situation is not allowed in the power system, and the extra power needs to be handled for the purpose of safety. In this paper, the hybrid power generated by renewable energy generators and traditional energy generators is used as power supply, and then the electricity market sells hybrid power to electricity consumers, the hybrid power system determines the optimal daytime price, nighttime price, and the optimal installed capacity of the renewable energy suppliers. We find that the installed capacity of renewable energy increases first and then decreases with the increase of the price sensitivity coefficient of traditional energy supply. Electricity demand is negatively related to electricity price in the current period, and is positively related to price in the other period. The average price of day and night is only related to the total potential demand of day and night and the total generation probability of renewable energy. The price difference between daytime and nighttime is positively related to potential electricity demand, and negatively related to the sensitivity coefficient of electricity price.


Author(s):  
Jonathan Murphy ◽  
Tommer Ender ◽  
Dimitri Mavris ◽  
Comas Haynes

A surrogate modeling approach was developed and implemented for facilitating the design of renewable, hybrid power systems. A time-series hybrid power system simulation code (HOMER with supplement analysis) was replicated via readily executable neural network surrogate models. These surrogate models were subsequently integrated into a conceptual design engineering tool. The tool enables the rapid sizing and optimization of system components in the face of variable environmental conditions (i.e., renewable energy resources), economic conditions and weighted objectives. Accordingly, this tool was successfully used in the multi-objective design of a deployable hybrid renewable power system. This same capability can also be used to assess the feasibility of the requirements and constraints themselves, and potentially to guide the customer to appropriate design specifications.


Sign in / Sign up

Export Citation Format

Share Document