Three Input DC-DC Boost Converter for Hybrid Power System with Multilevel Inverter

2013 ◽  
Vol 768 ◽  
pp. 398-403
Author(s):  
Jagriti Narayan ◽  
R. Johnson Uthayakumar

A new three input DC-DC boost converter fed symmetrical multilevel inverter is proposed. The converter interfaces two unidirectional input power ports and a bidirectional port to battery in a unified structure. This converter uses hybrid alternative energy source such as Photo Voltaic (PV) source, Fuel Cell (FC) source, and Battery. Supplying the output load, charging or discharging the battery can be made by the PV and the FC power sources individually or simultaneously. The proposed structure utilizes only four power switches that are independently controlled with four different duty ratios. Proposed inverter uses two cells for five level output. Boost converter provided hybrid sources to multilevel inverter. Here we promote inverter for attain a pure sinusoidal harmonics free ac application.Key Words-Photovoltaic/fuel cell (PV/FC)/battery hybrid power system, three-input dcdc boost converter.

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1889 ◽  
Author(s):  
Nicu Bizon ◽  
Valentin Alexandru Stan ◽  
Angel Ciprian Cormos

In this paper, a systematic analysis of seven control topologies is performed, based on three possible control variables of the power generated by the Fuel Cell (FC) system: the reference input of the controller for the FC boost converter, and the two reference inputs used by the air regulator and the fuel regulator. The FC system will generate power based on the Required-Power-Following (RPF) control mode in order to ensure the load demand, operating as the main energy source in an FC hybrid power system. The FC system will operate as a backup energy source in an FC renewable Hybrid Power System (by ensuring the lack of power on the DC bus, which is given by the load power minus the renewable power). Thus, power requested from the batteries’ stack will be almost zero during operation of the FC hybrid power system based on RPF-control mode. If the FC hybrid power system operates with a variable load demand, then the lack or excess of power on the DC bus will be dynamically ensured by the hybrid battery/ultracapacitor energy storage system for a safe transition of the FC system under the RPF-control mode. The RPF-control mode will ensure a fair comparison of the seven control topologies based on the same optimization function to improve the fuel savings. The main objective of this paper is to compare the fuel economy obtained by using each strategy under different load cycles in order to identify which is the best strategy operating across entire loading or the best switching strategy using two strategies: one strategy for high load and the other on the rest of the load range. Based on the preliminary results, the fuel consumption using these best strategies can be reduced by more than 15%, compared to commercial strategies.


2013 ◽  
Vol 448-453 ◽  
pp. 2326-2334 ◽  
Author(s):  
Yan Ping Li ◽  
Li Liu ◽  
Xiao Hui Zhang ◽  
Shang Tao Shi ◽  
Chang Wei Guo

As the aviation has realized the seriousness of pollution and emission issues, people have taken efforts to use renewable energy on planes or UAVs. This paper focused on the applications of solar and hydrogen energy to UAVs. A hybrid power system, consisting of solar cells, fuel cells and lithium batteries, was discussed. To achieve the hybridization of power sources, a prototype of a power management unit (PMU) was fabricated. After the installation of a test system for synthesizing power sources, PMU and load, a series of ground tests were executed to verify the mathematical model of lithium battery and the reliability of the hardware. Ground data confirmed the feasibility of hybrid power system.


2010 ◽  
Vol 57 (6) ◽  
pp. 1976-1986 ◽  
Author(s):  
Ke Jin ◽  
Mengxiong Yang ◽  
Xinbo Ruan ◽  
Min Xu

Sign in / Sign up

Export Citation Format

Share Document