Electricity Price of Hybrid Power System and Decision Making of Renewable Energy Investment Capacity

2018 ◽  
Vol 6 (3) ◽  
pp. 193-213 ◽  
Author(s):  
Jiaping Xie ◽  
Weisi Zhang ◽  
Yu Xia ◽  
Ling Liang ◽  
Lingcheng Kong

Abstract In the existing electricity market, the traditional power suppliers and renewable energy generators coexist in the power supply side. In the power supply side, renewable energy generators generate power by wind and other natural conditions, leading renewable energy output a certain randomness. However, the low marginal generating cost and the reduction of carbon emissions, and thus brings a certain advantage for renewable energy compared to alternative energy. Electricity, as a special commodity, stable and adequate power supply is a necessary guarantee for economic and social development. Power shortage situation is not allowed in the power system, and the extra power needs to be handled for the purpose of safety. In this paper, the hybrid power generated by renewable energy generators and traditional energy generators is used as power supply, and then the electricity market sells hybrid power to electricity consumers, the hybrid power system determines the optimal daytime price, nighttime price, and the optimal installed capacity of the renewable energy suppliers. We find that the installed capacity of renewable energy increases first and then decreases with the increase of the price sensitivity coefficient of traditional energy supply. Electricity demand is negatively related to electricity price in the current period, and is positively related to price in the other period. The average price of day and night is only related to the total potential demand of day and night and the total generation probability of renewable energy. The price difference between daytime and nighttime is positively related to potential electricity demand, and negatively related to the sensitivity coefficient of electricity price.

2014 ◽  
Vol 541-542 ◽  
pp. 892-897 ◽  
Author(s):  
Peng Fei Yi ◽  
Jian Zhang ◽  
Zhao Yuan Zhang

This paper built a hybrid power system, including wind power, PV power and hydro power generation. It is presented mathematical model for the optional design of hybrid power system. The object of the model are to minimize the initial investment cost, power supply reliability and power complementation. The constraint condition are included system working, installed capacity and load balance, So the capacity matching model is established. A stand-alone photovoltaic of pasturing area is calculated by using the model. The result shows that the optional design model have an important sense, which improved power supply reliability, complementary characteristics of hybrid power and reduce the total cost of the system.


2017 ◽  
pp. 1438-1460 ◽  
Author(s):  
Vincent Anayochukwu Ani

Telecommunications industry requires efficient, reliable and cost-effective hybrid power system as alternative to the power supplied by diesel generator. This paper proposed an operational control algorithm that will be used to control and supervise the operations of PV/Wind-Diesel hybrid power generation system for GSM base station sites. The control algorithm was developed in such a way that it coordinates when power should be generated by renewable energy (PV panels and Wind turbine) and when it should be generated by diesel generator and is intended to maximize the use of renewable system while limiting the use of diesel generator. Diesel generator is allocated only when the demand cannot be met by the renewable energy sources including battery bank. The developed algorithm was used to study the operations of the hybrid PV/Wind-Diesel energy system. The control simulation shows that the developed algorithm reduces the operational hours of the diesel generator thereby reducing the running cost of the hybrid energy system as well as the pollutant emissions. With the data collected from the site, a detailed economic and environmental analysis was carried out using micro power optimization software homer. The study evaluates savings associated with conversion of the diesel powered system to a PV/Wind-Diesel hybrid power system.


2011 ◽  
Vol 11 (12) ◽  
pp. 2270-2275 ◽  
Author(s):  
Zeinab Abdallah M. Elhassa ◽  
Muhammad Fauzi Moh Zain ◽  
Kamaruzzaman Sopian ◽  
Arafa Awadalla

2019 ◽  
Vol 118 ◽  
pp. 02054
Author(s):  
Jingli Li ◽  
Wannian Qi ◽  
Jun Yang ◽  
Yi He ◽  
Jingru Luo ◽  
...  

This paper proposes a Wind-Photovoltaic-Thermal Energy Storage hybrid power system with an electric heater. The proposed system consists of wind subsystem, photovoltaic subsystem, electric heater, thermal energy storage and steam turbine unit. The electric heater is used to convert the redundant electricity from wind or photovoltaic subsystem into heat, which is stored in thermal energy storage. When the system output is less than the load demand, thermal energy storage system releases heat to generate electricity. In this paper, the optimal objective is to minimize the levelized cost of energy and maximize the utilization rates of renewable energy and transmission channel. The fitness function is compiled according to the scheduling strategy, and the capacity optimization problem is solved by particle swarm optimization algorithm in MATLAB. The case analysis show that the proposed system can effectively increase the utilization rate of renewable energy and transmission channel.


2020 ◽  
Vol 15 (3) ◽  
pp. 360-367
Author(s):  
Khagendra Bahadur Thapa ◽  
Arbin Maharjan ◽  
Kishor Kaphle ◽  
Kishor Joshi ◽  
Tara Aryal

The adaptation of renewable energy has been increasing in a very encouraging way all over the world. Among various renewable energy resources, wind and solar energy are the promising sources of alternative energy. Wind and solar photovoltaic (PV) have been employed in parallel as a hybrid system for better electricity service. This paper presents a case study and modeling of wind-solar hybrid system in Hriharpur Gadi village, Sindhuli District, Nepal. The hybrid system yields 110kWh of energy per day meeting the village’s electricity demand of 87 kWh per day. Moreover, the hybrid power system with battery storage system is modeled using MATLAB simulator. Further, improvising in the existing modeling has been presented to enhance the efficiency and effectiveness of the system.


2012 ◽  
Vol 614-615 ◽  
pp. 1759-1765
Author(s):  
Yi Cheng Chen ◽  
Zhi Xin Wang

This article aims to make a design of the power supply for an isolated island that has difficulty in realizing the connection with the mainland power grid. An independent hybrid power system consisting of varieties of renewable power sources including solar power, wind power, wave energy and batteries are introduced. This system is dedicated to make the forecast of the electricity load of the island according to the environmental factors and the electricity demand of the island. Then it builds the basic framework and models of hybrid power system on the basis of the forecast and finds out the appropriate method to optimize the power supply.


2012 ◽  
Vol 608-609 ◽  
pp. 790-795
Author(s):  
Dong Lei ◽  
Lv Qin ◽  
Pu Tianjiao ◽  
Zhou Haiming

Renewable energy resources such as wind, wave, solar and biomass are becoming more important, and Wind-PV-ES hybrid power system is a promising and efficient utilization of renewable energy. Based on the sequential Monte-Carlo simulation approach, an evaluation model of Wind-PV-ES hybrid generation system is built, and storage time series model is optimized. Lastly, the effectiveness and feasibility of the proposed model is verified by a practical example, and the system impacts of PV penetration level, energy storage capacity and rated output power are illustrated.


2011 ◽  
Vol 1 (4) ◽  
pp. 84-89
Author(s):  
E. A. Al-Ammar ◽  
N. H. Malik ◽  
M. Usman

One of the major world wide concerns of the utilities is to reduce the emissions from traditional power plants by using renewable energy and to reduce the high cost of supplying electricity to remote areas. Hybrid power systems can provide a good solution for such problems because they integrate renewable energy along with the traditional power plants. In Kingdom of Saudi Arabia a remote village called Al-Qtqt, was selected as a case study in order to investigate the ability to use a hybrid power system to provide the village with its needs of electricity. The simulation of this hybrid power system was done using HOMER software.


Sign in / Sign up

Export Citation Format

Share Document