A Novel Method for SUAV Path Planning Based on MPC

2012 ◽  
Vol 616-618 ◽  
pp. 2153-2157
Author(s):  
Hang Yu Wang

Path planning has always being one of the most significant study fields in Small UAV researching. And Model Predictive Control (MPC) is a special strategy in obtaining the control actions which were achieved by solving a finite horizon optimal control problem at each instant. The paper advanced a novel method which was called Model Predictive Path Planning Strategy (MPPS) based on MPC to deal with the SUAV path planning problem and a responding predictive planner was put forward to generate an effective path for SUAV in simulative urban environment. The results of the simulation show that the advanced method can be used to plan path for SUAV.

Author(s):  
Zhenyue Jia ◽  
Ping Lin ◽  
Jiaolong Liu ◽  
Luyang Liang

The online cooperative path planning problem is discussed for multi-quadrotor maneuvering in an unknown dynamic environment. Based on the related basic concepts, typical three-dimensional obstacle models, such as spherical and cubic, and their collision checking criteria are presented in this article. An improved rapidly exploring random tree (RRT) algorithm with goal bias and greed property is proposed based on the heuristic search strategy to overcome the shortcomings of the classical RRT algorithm. Not only are the kinematic constraints of the quadrotor established but the time and space coordination strategy matching with the improved RRT algorithm is also presented in this article. Furthermore, a novel online collision avoidance strategy according to the partial information of the surrounding environment is proposed. On the basis of the above work, a distributed online path planning strategy is proposed to obtain the feasible path for each quadrotor. Numerical simulation results show that the improved RRT algorithm has better search efficiency than the classical RRT algorithm. And the satisfactory path planning and path tracking results prove that the above model and related planning strategies are reasonable and effective.


2017 ◽  
Vol 2017 ◽  
pp. 1-27 ◽  
Author(s):  
Domokos Kiss ◽  
Gábor Tevesz

In this paper we introduce a novel method for obtaining good quality paths for autonomous road vehicles (e.g., cars or buses) in narrow environments. There are many traffic situations in urban scenarios where nontrivial maneuvering in narrow places is necessary. Navigating in cluttered parking lots or having to avoid obstacles blocking the way and finding a detour even in narrow streets are challenging, especially if the vehicle has large dimensions like a bus. We present a combined approximation-based approach to solve the path planning problem in such situations. Our approach consists of a global planner which generates a preliminary path consisting of straight and turning-in-place primitives and a local planner which is used to make the preliminary path feasible to car-like vehicles. The approximation methodology is well known in the literature; however, both components proposed in this paper differ from existing similar planning methods. The approximation process with the proposed local planner is proven to be convergent for any preliminary global paths. The resulting path has continuous curvature which renders our method well suited for application on real vehicles. Simulation experiments show that the proposed method outperforms similar approaches in terms of path quality in complicated planning tasks.


2015 ◽  
Vol 21 (4) ◽  
pp. 949-964 ◽  
Author(s):  
Alejandro Hidalgo-Paniagua ◽  
Miguel A. Vega-Rodríguez ◽  
Joaquín Ferruz ◽  
Nieves Pavón

Robotica ◽  
2021 ◽  
pp. 1-30
Author(s):  
Ümit Yerlikaya ◽  
R.Tuna Balkan

Abstract Instead of using the tedious process of manual positioning, an off-line path planning algorithm has been developed for military turrets to improve their accuracy and efficiency. In the scope of this research, an algorithm is proposed to search a path in three different types of configuration spaces which are rectangular-, circular-, and torus-shaped by providing three converging options named as fast, medium, and optimum depending on the application. With the help of the proposed algorithm, 4-dimensional (D) path planning problem was realized as 2-D + 2-D by using six sequences and their options. The results obtained were simulated and no collision was observed between any bodies in these three options.


Author(s):  
Duane W. Storti ◽  
Debasish Dutta

Abstract We consider the path planning problem for a spherical object moving through a three-dimensional environment composed of spherical obstacles. Given a starting point and a terminal or target point, we wish to determine a collision free path from start to target for the moving sphere. We define an interference index to count the number of configuration space obstacles whose surfaces interfere simultaneously. In this paper, we present algorithms for navigating the sphere when the interference index is ≤ 2. While a global calculation is necessary to characterize the environment as a whole, only local knowledge is needed for path construction.


1998 ◽  
Vol 29 (8) ◽  
pp. 807-868 ◽  
Author(s):  
ALBERT Y. ZOMAYA MATT R. WRIGHT TAR

Sign in / Sign up

Export Citation Format

Share Document