Discuss about Fast Response Performance of under-Damped Second-Order System in Time Domain

2013 ◽  
Vol 655-657 ◽  
pp. 2202-2206
Author(s):  
Yuan Sheng Wang ◽  
Gui Ying Lu ◽  
Juan Yu ◽  
Bo Li

Influence of the damping ratio on the response fast performance to under-damped second-order system in the time domain has been discussed. The relationship between peak time and the input signal, the adjust time, and the system type has been analyzed. The response’s fast performance indicators are relative, and it is related to the input signal, the response of the system, and the type of system and its initial states. In conclusion, the peak time and the adjust time cannot reach a minimum at the same time. The fast response issue must be discussed in relation to specific cases, and it cannot be generalized.

2011 ◽  
Vol 55-57 ◽  
pp. 224-228
Author(s):  
Gao Fei Guo ◽  
Shun Xiang Wu ◽  
Da Cao

This paper analyses the transient response of second-order system through time domain analysis, root locus and frequency domain analysis, meanwhile, studies the influence exerted to the system by the second-order system damping ratio and the coefficient ratio as well as the research and damping ratio associated with the relevant parameters, like delay time, rise time, peak time, overshoot, time regulation, basing on the unit step response, and the stability of the system is studied by root locus. Finally, graphics are built through the application of Matlab in order to have an intuitive understanding of the impact on the performance of the system.


1991 ◽  
Vol 34 (1) ◽  
pp. 145-146 ◽  
Author(s):  
C.L. Phillips ◽  
J.M. Parr

1997 ◽  
Vol 05 (04) ◽  
pp. 355-370 ◽  
Author(s):  
E. K. Skarsoulis

A scheme for approximate normal-mode calculation of broadband acoustic signals in the time domain is proposed based on a second-order Taylor expansion of eigenvalues and eigenfunctions with respect to frequency. For the case of a Gaussian impulse source a closed-form expression is derived for the pressure in the time domain. Using perturbation theory, analytical expressions are obtained for the involved first and second frequency-derivatives of eigenvalues and eigenfunctions. The proposed approximation significantly accelerates arrival-pattern calculations, since the eigenvalues, the eigenfunctions and their frequency-derivatives need to be calculated at a single frequency, the central frequency of the source. Furthermore, it offers a satisfactory degree of accuracy for the lower and intermediate order modes. This is due to the fact that essential wave-theoretic mechanisms such as dispersion and frequency dependence of mode amplitudes are contained in the representation up to a sufficient order. Numerical results demonstrate the efficiency of the method.


Geophysics ◽  
2013 ◽  
Vol 78 (2) ◽  
pp. KS41-KS49 ◽  
Author(s):  
Deborah Fagan ◽  
Kasper van Wijk ◽  
James Rutledge

Identifying individual subsurface faults in a larger fault system is important to characterize and understand the relationship between microseismicity and subsurface processes. This information can potentially help drive reservoir management and mitigate the risks of natural or induced seismicity. We have evaluated a method of statistically clustering power spectra from microseismic events associated with an enhanced oil recovery operation in southeast Utah. Specifically, we were able to provide a clear distinction within a set of events originally designated in the time domain as a single cluster and to identify evidence of en echelon faulting. Subtle time-domain differences between events were accentuated in the frequency domain. Power spectra based on the Fourier transform of the time-domain autocorrelation function were used, as this formulation results in statistically independent intensities and is supported by a full body of statistical theory upon which decision frameworks can be developed.


2021 ◽  
Vol 8 (1) ◽  
pp. E9-E16
Author(s):  
P.C. Eze ◽  
C.A. Ugoh ◽  
D.S. Inaibo

Direct current (DC) servomotor-based parabolic antenna is automatically positioned using control technique to track satellite by maintaining the desired line of sight for quality transmission and reception of electromagnetic wave signals in telecommunication and broadcast applications. With several techniques proposed in the literature for parabolic antenna position control, there is still a need to improve the tracking error and robustness of the control system in the presence of disturbance. This paper has presented positioning control of DC servomotor-based antenna using proportional-integral-derivative (PID) tuned compensator (TC). The compensator was designed using the control and estimation tool manager (CETM) of MATLAB based on the PID tuning design method using robust response time tuning technique with interactive (adjustable performance and robustness) design mode at a bandwidth of 40.3 rad/s. The compensator was added to the position control loop of the DC servomotor–based satellite antenna system. Simulations were carried out in a MATLAB environment for four separate cases by applying unit forced input to examine the various step responses. In the first and second cases, simulations were conducted without the compensator (PID TC) in the control loop assuming zero input disturbance and unit input disturbance. The results obtained in terms of time-domain response parameters showed that with the introduction of unit disturbance, the rise time improved by 36 % (0.525–0.336 s) while the peak time, peak percentage overshoot, and settling time deteriorate by 16.3 % (1.29–1.50 s), 43.5 % (34.7–49.8 %), and 7.6 % (4.35–4.68 s), respectively. With the introduction of the PIDTC for the third case, there was an improvement in the system’s overall transient response performance parameters. Thus to provide further information on the improved performance offered by the compensator, the analysis was done in percentage improvement. Considering the compensated system assuming zero disturbance, the time-domain response performance parameters of the system improved by 94.1, 94.7, 73.1, and 97.1 % in terms of rising time (525–30.8 ms), peak time (1,290–67.9 ms), peak percentage overshoot (34.7–9.35 %), and settling time (4.35–0.124 s), respectively. In the fourth case, the compensator’s ability to provide robust performance in the presence of disturbance was examined by comparing the step response performance parameters of the uncompensated system with unit input disturbance to the step response performance parameters of the compensated system tagged: with PID TC + unit disturbance. The result shows that PID TC provided improved time-domain transient response performance of the disturbance handling of the system by 91.0, 95.4, 80.0, and 93.1 % in terms of rising time (336–30.5 ms), peak time (1500–69.1 ms), peak percentage overshoot (34.7–10.0), and settling time (4.68–0.325 s), respectively. The designed compensator provided improved robust and tracking performance while meeting the specified time-domain performance parameters in the presence of disturbance.


Sign in / Sign up

Export Citation Format

Share Document