fourier synthesis
Recently Published Documents


TOTAL DOCUMENTS

263
(FIVE YEARS 12)

H-INDEX

34
(FIVE YEARS 1)

2021 ◽  
Vol 263 (6) ◽  
pp. 112-122
Author(s):  
Shuaikang Shi ◽  
Huang Xiuchang ◽  
Rao zhiqiang ◽  
Hua hongxing

To clarify the characteristics of unsteady force spectrum of a pump-jet running under inflow turbulent,the turbulence grid and Fourier synthesis method is employed to produce incoming turbulence with spatial flow structure and temporal fluctuation, which is combined with LES (large eddy simulation) to obtain broadband unsteady force spectrum of the pump-jet. The results show that the proposed method could obtain the unsteady force broadband spectrum for duct, stator and rotor. The unsteady force broadband spectrum of the pump-jet is composed of the "hump" around the blade passing frequency and its multiples, the characteristic line spectrum at the stator blade passing frequency and shaft frequency of adjacent stator multiples. With the number of blades increasing, the "hump" becomes more obvious, the characteristic peak changes periodically and reaches the minimum when the number of blades is the number of rotors. Due to the use of the stator and duct, the amplitude of the unsteady force broadband spectrum of the pump-jet is higher than propeller, but the "hump" is not as obvious as propeller. The research is helpful to clarify the unsteady force characteristics of pump-jet induced by turbulence, and provide ideas for the vibration and noise reduction of pump-jet.


2021 ◽  
Vol 77 (2) ◽  
pp. 249-266
Author(s):  
Dale E. Tronrud ◽  
P. Andrew Karplus

While broadening the applicability of (φ/ψ)-dependent target values for the bond angles in the peptide backbone, sequence/conformation categories with too few residues to analyze via previous methods were encountered. Here, a method of describing a conformation-dependent library (CDL) using two-dimensional Fourier coefficients is reported where the number of coefficients for individual categories is determined via complete cross-validation. Sample sizes are increased further by selective blending of categories with similar patterns of conformational dependence. An additional advantage of the Fourier-synthesis-based CDL is that it uses continuous functions and has no artifactual steps near the edges of populated regions of φ/ψ space. A set of libraries for the seven main-chain bond angles, along with the ω and ζ angles, was created based on a set of Fourier analyses of 48 368 residues selected from high-resolution models in the wwPDB. This new library encompasses both trans- and cis-peptide bonds and outperforms currently used discrete CDLs.


2020 ◽  
Author(s):  
Vladimir Molchanov ◽  
Konstantin Yushkov ◽  
Pavel Kostryukov ◽  
Petr Gornostaev ◽  
Nikolay Vorobiev

The paper belongs to the field of ultrafast optics. Acousto-optic pulse shaping has been studied experimentally for binary intensity modulation in a chirped pulse amplification laser system. Direct time-domain measurement of pulse front duration with a picosecond streak camera was performed for a Ti:sapphire regenerative amplifier. It was discovered that the sign of the second order dispersion produced by the acousto-optic dispersion delay line affects the modulation rise/fall time. Two algorithms for synthesis of ultrasonic waveforms for feeding the delay line, dispersive Fourier synthesis and the Gerchberg-Saxton algorithm, were compared. Minimum pulse front duration of 3.6 ps for 3 mJ pulses with the linear chirp of 6.2 ps/nm at the wavelength of 795 nm was obtained.


2020 ◽  
pp. 1475472X2097839
Author(s):  
Paruchuri Chaitanya ◽  
Pratibha Vellanki

This paper presents an optimisation approach for designing low-noise Outlet Guide Vanes (OGVs) for fan broadband noise generated due to the interaction of turbulence and a cascade of 2-dimensional aerofoils. The paper demonstrates the usage of Bayesian optimisation with constraints to reduce the computation cost of optimisation. The prediction is based on Fourier synthesis of the impinging turbulence and the aerofoil response is predicted for each vortical modal component. A linearised unsteady Navier-Stokes solver is used to predict the aerofoil response due to an incoming harmonic vortical gust. This paper shows that to achieve noise reductions of 0.5 dB the penalty on the aerodynamic performance of 33% is observed compared to baseline aerofoil. Hence, the geometry changes such as thickness and nose radius can’t reduce broadband noise without effecting aerodynamic performance.


2020 ◽  
Author(s):  
Vladimir Molchanov ◽  
Konstantin Yushkov ◽  
Pavel Kostryukov ◽  
Petr Gornostaev ◽  
Nikolay Vorobiev

The paper belongs to the field of ultrafast optics. Acousto-optic pulse shaping has been studied experimentally for binary intensity modulation in a chirped pulse amplification laser system. Direct time-domain measurement of pulse front duration with a picosecond streak camera was performed for a Ti:sapphire regenerative amplifier. It was discovered that the sign of the second order dispersion produced by the acousto-optic dispersion delay line affects the modulation rise/fall time. Two algorithms for synthesis of ultrasonic waveforms for feeding the delay line, dispersive Fourier synthesis and the Gerchberg-Saxton algorithm, were compared. Minimum pulse front duration of 3.6 ps for 3 mJ pulses with the linear chirp of 6.2 ps/nm at the wavelength of 795 nm was obtained.


2020 ◽  
Vol 36 (12) ◽  
pp. 125003
Author(s):  
Mikhail Isaev ◽  
Roman G Novikov

Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 998
Author(s):  
Shunsuke Kitou ◽  
Yuto Hosogi ◽  
Ryo Kitaura ◽  
Toshio Naito ◽  
Toshikazu Nakamura ◽  
...  

The physical properties of molecular crystals are governed by the frontier orbitals of molecules. A molecular orbital, which is formed by superposing the atomic orbitals of constituent elements, has complicated degrees of freedom in the crystal because of the influence of electron correlation and crystal field. Therefore, in general, it is difficult to experimentally observe the whole picture of a frontier orbital. Here, we introduce a new method called “core differential Fourier synthesis” (CDFS) using synchrotron X-ray diffraction to observe the valence electron density in materials. By observing the valence electrons occupied in molecular orbitals, the orbital state can be directly determined in a real space. In this study, we applied the CDFS method to molecular materials such as diamond, C60 fullerene, (MV)I2, and (TMTTF)2X. Our results not only demonstrate the typical orbital states in some materials, but also provide a new method for studying intramolecular degrees of freedom.


Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 538
Author(s):  
Maria Cristina Burla ◽  
Benedetta Carrozzini ◽  
Giovanni Luca Cascarano ◽  
Carmelo Giacovazzo ◽  
Giampiero Polidori

In this study, the properties of observed, difference, and hybrid syntheses (hybrid indicates a combination of observed and difference syntheses) are investigated from two points of view. The first has a statistical nature and aims to estimate the amplitudes of peaks corresponding to the model atoms, belonging or not belonging to the target structure; the amplitudes of peaks related to the target atoms, missed or shared with the model; and finally, the quality of the background. The latter point deals with the practical features of Fourier syntheses, the special role of weighted syntheses, and their usefulness in practical applications. It is shown how the properties of the various syntheses may vary according to the available structural model and, in particular, how weighted hybrid syntheses may act like an observed and difference or a full hybrid synthesis. The theoretical results obtained in this paper suggest new Fourier syntheses using novel Fourier coefficients: their main features are first discussed from a mathematical point of view. Extended experimental applications show that they meet the basic mission of the Fourier syntheses, enhancing peaks corresponding to the missed target atoms, depleting peaks corresponding to the model atoms not belonging to the target, and significantly reducing the background. A comparison with the results obtained via the most popular modern Fourier syntheses is made, suggesting a role for the new syntheses in modern procedures for phase extension and refinement. The most promising new Fourier synthesis has been implemented in the current version of SIR2014.


2020 ◽  
Vol 76 (2) ◽  
pp. 147-154
Author(s):  
Masato Yoshimura ◽  
Nai-Chi Chen ◽  
Hong-Hsiang Guan ◽  
Phimonphan Chuankhayan ◽  
Chien-Chih Lin ◽  
...  

Noncrystallographic symmetry (NCS) averaging following molecular-replacement phasing is generally the major technique used to solve a structure with several molecules in one asymmetric unit, such as a spherical icosahedral viral particle. As an alternative method to NCS averaging, a new approach to optimize or to refine the electron density directly under NCS constraints is proposed. This method has the same effect as the conventional NCS-averaging method but does not include the process of Fourier synthesis to generate the electron density from amplitudes and the corresponding phases. It has great merit for the solution of structures with limited data that are either twinned or incomplete at low resolution. This method was applied to the case of the T = 1 shell-domain subviral particle of Penaeus vannamei nodavirus with data affected by twinning using the REFMAC5 refinement software.


Sign in / Sign up

Export Citation Format

Share Document