Optimization Studies on Acid Hydrolysis of Pretreated Oil Palm Empty Fruit Bunch for Production of Xylose by Application of Response Surface Methodology

2013 ◽  
Vol 699 ◽  
pp. 77-82 ◽  
Author(s):  
S. Duangwang ◽  
C. Sangwichien

Oil palm empty fruit bunch is a lignocellulosic material from palm oil plantations. It is a potential source of xylose which can be used as a raw material for production of xylitol. Using of lignocellulosic waste for bioconversion to fuels and chemicals is justifiable as these materials are low cost, renewable and widespread sources of sugars. The objective of the present study was to determine the effect of H2SO4 concentration, reaction temperature and reaction time for acid hydrolysis of pretreated OPEFB, pretreated OPEFB with reaction temperature, reaction time and NaOH concentration were 130 °C, 40 min and 15% (w/v), respectively to achieve high xylose yield. Batch reactions were carried out under various reaction temperature, reaction time and H2SO4 concentration. Response Surface Methodology (RSM) was followed to optimize acid hydrolysis in order to obtain high yield of xylose. The optimum reaction temperature, reaction time and H2SO4 concentration were found to be 140 °C, 90 min and 7% (w/v), respectively. The maximum value of xylose was obtained 56.39 g/l by using the above condition. The best result of xylose yield obtained was 126%.

2012 ◽  
Vol 622-623 ◽  
pp. 117-121 ◽  
Author(s):  
Sairudee Duangwang ◽  
Chayanoot Sangwichien

Oil palm empty fruit bunch (OPEFB) is a potential source of cellulose which can serve as a promising raw material for the production of ethanol. The increasing interest on use of lignocellulosic waste for bioconversion to fuels and chemicals are justifiable as these materials are low cost, renewable and widespread sources of sugars. The objective of the present study was to determine the effect of NaOH concentration, reaction temperature and reaction time for alkali pretreatment to increase the amount of cellulose for hydrolysis to achieve high glucose yield. Batch reactions were carried out under various reaction temperature, reaction time and NaOH concentration. Response Surface Methodology (RSM) was followed to optimize the alkali pretreatment in order to obtain high amount of cellulose (%). The optimum reaction temperature, reaction time and NaOH concentration were found to be 130 ˚c, 40 min and 15% (w/v), respectively. The maximum value of cellulose was obtained 68.8% by using the above condition. 19.96 g/L glucose was achieved when reaction was carried out at 130 ˚c for time period of 90 min when 6% (w/v) of H2SO4 concentration maintained.


Author(s):  
HERMAN SURYAD ◽  
ARRY YANUAR ◽  
HARMITA ◽  
PUTRI WINNY RACHMADANI

Objective: The study aimed to identify the best conditions using oxalic acid for hydrolysis of hemicellulose in oil palm empty fruit bunch (OPEFB)biomass.Methods: The analytical method of high-performance liquid chromatography (HPLC) was using a SUPELCOSIL LC-NH2 column, refractive indexdetection detector, and three compositions of the mobile phase. At first, the hydrolysis of hemicellulose in OPEFB powder was optimized by applyinga response surface methodology. A three-variable, six-central composite design was used for the experiments. Temperature (between 95°C and135°C), reaction time (between 10 and 110 min), and oxalic acid concentration (between 1% and 7% [w/v]) were evaluated by running 15 differentexperiments at constant biomass concentrations. Then, hydrolysis was optimized again at the constant temperature selected with three variables:OPEFB concentration, reaction time, and oxalic acid concentration. Hydrolysate samples were detoxified with carbon active, and furfural compoundwas analyzed by gas chromatography with flame ionization detector.Results: The optimum condition of HPLC was using acetonitrile: water (9:1) at a flow rate of 1.0 ml/min. The first hydrolysis results showeda high yield of D-xylose produced, which was 6.40 g D-xylose/100 g OPEFB biomass, with a xylose recovery of 93.8%. However, this result wasnot yet optimum. Further hydrolysis at constant temperature experiment produced the highest xylose yield of 13.13%, equivalent to 32 g/lD-xylose.Conclusion: The yield of D-xylose from mild hydrolysis using oxalic acid was similar to that using dilute sulfuric acid as used in the previous studyby Rahman et al.


2011 ◽  
Vol 366 ◽  
pp. 366-369
Author(s):  
Feng Gao ◽  
Rong Fu ◽  
Ming Yang Qian ◽  
Zhu Min Wang ◽  
Xiang Zhang

Response surface methodology was used to optimize the soaking Mg leaching ratio from the boron slurry screened by 25 fractional factorial design. Five effective factors such as H2SO4 concentrations, reaction time, reaction temperature and stir velocity were tested by using 25 fractional factorial design criterion and three effective factors H2SO4 concentrations, reaction time and reaction temperature showed significant effect(P2SO4 concentrations of 0.29mol/l, reaction time of 90 min and reaction temperature of 50°C. Three runs of additional confirmation experiments were conducted. The mixture magnesium leaching value was 58.20%.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yu-Bin Ji ◽  
Fang Dong ◽  
Miao Yu ◽  
Long Qin ◽  
Dan Liu

The response surface methodology was employed to optimize the synthesis conditions of seleno-Sargassum fusiforme(Harv.) Setch. polysaccharide. Three independent variables (reaction time, reaction temperature, and ratio of Na2SeO3to SFPSI) were tested. Furthermore, the characterization and antioxidant activity of Se-SFPSIin vivowere investigated. The result showed that the actual experimental Se content of Se-SFPSI was 3.352 mg/g at the optimum reaction conditions of reaction time 8 h, reaction temperature 71°C, and ratio of Na2SeO3to SFPSIB 1.0 g/g. A series of experiments showed that the characterization of Se-SFPSIB was significantly different from that of SFPSIB. Additionally, antioxidant activity assay indicated that the Se-SFPSIB could increase catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activity of mice bearing tumor S180in blood, heart, and liver while decreasing malondialdehyde (MDA) levels. It can be concluded that selenylation is a feasible approach to obtain seleno-polysaccharide which was utilized as highly biological medicine or functional food.


2007 ◽  
Vol 98 (3) ◽  
pp. 554-559 ◽  
Author(s):  
S.H.A. Rahman ◽  
J.P. Choudhury ◽  
A.L. Ahmad ◽  
A.H. Kamaruddin

2019 ◽  
Vol 19 (4) ◽  
pp. 849
Author(s):  
Nurul Atikah Amin Yusof ◽  
Nursyamsyila Mat Hadzir ◽  
Siti Efliza Ashari ◽  
Nor Suhaila Mohamad Hanapi ◽  
Rossuriati Dol Hamid

Optimization of the lipase catalyzed enzymatic synthesis of betulinic acid amide in the presence of immobilized lipase, Novozym 435 from Candida antartica as a biocatalyst was studied. Response surface methodology (RSM) and 5-level-4-factor central-composite rotatable design (CCRD) were employed to evaluate the effects of the synthesis parameters, such as reaction time (20–36 h), reaction temperature (37–45 °C), substrate molar ratio of betulinic acid to butylamine (1:1–1:3), and enzyme amounts (80–120 mg) on the percentage yield of betulinic acid amide by direct amidation reaction. The optimum conditions for synthesis were: reaction time of 28 h 33 min, reaction temperature of 42.92 °C, substrate molar ratio of 1:2.21, and enzyme amount of 97.77 mg. The percentage yield of actual experimental values obtained 65.09% which compared well with the maximum predicted value of 67.23%. The obtained amide was characterized by GC, GCMS and 13C NMR. Betulinic acid amide (BAA) showed a better cytotoxicity compared to betulinic acid as the concentration inhibited 50% of the cell growth (IC50) against MDA-MB-231 cell line (IC50 < 30 µg/mL).


Author(s):  
Enmin Lv ◽  
Shaoxuan Ding ◽  
Jie Lu ◽  
Zhuang Li ◽  
Lixiong Du ◽  
...  

Abstract The integration process of polyethersulphone (PES) ultrafiltration with catalytic hydrolysis of lard was optimized by response surface methodology (RSM). The influences of molar ratio of water to lard, reaction time and transmembrane pressure on the fatty acids (FAs) yield were investigated. Results showed that the maximum FAs yield of 99.52 % was obtained under the optimized conditions of molar ratio of water to lard of 6.0:1.0, reaction time of 10.0 h and transmembrane pressure of 100.0 kPa. Moreover, the membrane cleaning efficiency was studied after four cleanings. Furthermore, the kinetic model of membrane separation process was investigated and the activation energy and pre-exponential factor were determined.


Sign in / Sign up

Export Citation Format

Share Document