betulinic acid
Recently Published Documents


TOTAL DOCUMENTS

1004
(FIVE YEARS 264)

H-INDEX

58
(FIVE YEARS 11)

2022 ◽  
Vol 48 (1) ◽  
pp. 58-63
Author(s):  
Merve Nur Ataş ◽  
◽  
Barış Ertuğrul ◽  
Elif Sinem İplik ◽  
Bedia Çakmakoğlu ◽  
...  

2022 ◽  
Vol 72 (4) ◽  
pp. e433
Author(s):  
B. Agame-Lagunes ◽  
M. Alegria-Rivadeneyra ◽  
A. Alexander-Aguilera ◽  
R. Quintana-Castro ◽  
C. Torres-Palacios ◽  
...  

Alternative therapies for cancer treatment have been developed using bioactive compounds such as betulinic acid (BA). The objective of this study was to investigate the bioactivity of BA in its free form and compare it with its nano-encapsulated form under a skin carcinogenesis protocol in a genetically modified murine model. K14E6 and FVB mice were divided into four groups to be treated with free BA and with betulinic acid nanoemulsion (BANE). Lecithin enriched with medium chain fatty acids (MCFAs) was employed as an emulsifier to prepare the nanoemulsions with a mean droplet size of 40 nm. Skin tumors were induced by exposure to DMBA and TPA directly to the transgenic mice. Tumor development was completely inhibited by BANE and by 70% with free BA. This was validated by histological sections and the gene expression of the Cdk4 and Casp8 genes.


Author(s):  
Kayode Adewole ◽  
Adebayo Ishola ◽  
Ige Olaoye

Abstract Background Cancer is responsible for high morbidity and mortality globally. Because the overexpression of histone deacetylases (HDACs) is one of the molecular mechanisms associated with the development and progression of some diseases such as cancer, studies are now considering inhibition of HDAC as a strategy for the treatment of cancer. In this study, a receptor-based in silico screening was exploited to identify potential HDAC inhibitors among the compounds isolated from Cajanus cajan, since reports have earlier confirmed the antiproliferative properties of compounds isolated from this plant. Results Cajanus cajan-derived phytochemicals were docked with selected HDACs, with givinostat as the reference HDAC inhibitor, using AutodockVina and Discovery Studio Visualizer, BIOVIA, 2020. Furthermore, absorption, distribution, metabolism and excretion (ADME) drug-likeness analysis was done using the Swiss online ADME web tool. From the results obtained, 4 compounds; betulinic acid, genistin, orientin and vitexin, were identified as potential inhibitors of the selected HDACs, while only 3 compounds (betulinic acid, genistin and vitexin) passed the filter of drug-likeness. The molecular dynamic result revealed the best level of flexibility on HDAC1 and HDAC3 compared to the wild-type HDACs and moderate flexibility of HDAC7 and HDAC8. Conclusions The results of molecular docking, pharmacokinetics and molecular dynamics revealed that betulinic acid might be a suitable HDAC inhibitor worthy of further investigation in order to be used for regulating conditions associated with overexpression of HDACs. This knowledge can be used to guide experimental investigation on Cajanus cajan-derived compounds as potential HDAC inhibitors.


2022 ◽  
Vol 914 ◽  
pp. 174686
Author(s):  
Li-yun Zheng ◽  
Xi Zou ◽  
Yan-li Wang ◽  
Min Zou ◽  
Fang Ma ◽  
...  

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Madeline M. Bashant ◽  
Saige M. Mitchell ◽  
Lucy R. Hart ◽  
Charlotta G. Lebedenko ◽  
Ipsita A. Banerjee

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260956
Author(s):  
Benjamin Kingsley Harley ◽  
David Neglo ◽  
Philip Tawiah ◽  
Mercy Adansi Pipim ◽  
Nana Ama Mireku-Gyimah ◽  
...  

Vulvovaginal candidiasis (VVC) is the second most common vaginal infection that affects women of reproductive age. Its increased occurrence and associated treatment cost coupled to the rise in resistance of the causative pathogen to current antifungal therapies has necessitated the need for the discovery and development of novel effective antifungal agents for the treatment of the disease. We report in this study the anti-Candida albicans activity of Solanum torvum 70% ethanol fruit extract (STF), fractions and some isolated compounds against four (4) fluconazole-resistant strains of C. albicans. We further report on the effect of the isolated compounds on the antifungal activity of fluconazole and voriconazole in the resistant isolates as well as their inhibitory effect on C. albicans biofilm formation. STF was fractionated using n-hexane, chloroform (CHCl3) and ethyl acetate (EtOAc) to obtain four respective major fractions, which were then evaluated for anti-C. albicans activity using the microbroth dilution method. The whole extract and fractions recorded MICs that ranged from 0.25 to 16.00 mg/mL. From the most active fraction, STF- CHCl3 (MIC = 0.25–1.00 mg/mL), four (4) known compounds were isolated as Betulinic acid, 3-oxo-friedelan-20α-oic acid, Sitosterol-3-β-D-glucopyranoside and Oleanolic acid. The compounds demonstrated considerably higher antifungal activity (0.016 to 0.512 mg/mL) than the extract and fractions and caused a concentration-dependent anti-biofilm formation activity. They also increased the sensitivity of the C. albicans isolates to fluconazole. This is the first report of 3-oxo-friedelan-20α-oic acid in the plant as well as the first report of betulinic acid, sitosterol-3-β-D-glucopyranoside and oleanolic acid from the fruits of S. torvum. The present study has demonstrated the anti-C. albicans activity of the constituents of S. torvum ethanol fruit extract and also shown that the constituents possess anti-biofilm formation and resistance modulatory activities against fluconazole-resistant clinical C. albicans isolates.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Paulo Michel Pinheiro Ferreira ◽  
Renata Rosado Drumond ◽  
Jurandy do Nascimento Silva ◽  
Ian Jhemes Oliveira Sousa ◽  
Marcus Vinicius Oliveira Barros de Alencar ◽  
...  

Mimosa caesalpiniifolia (Fabaceae) is used by Brazilian people to treat hypertension, bronchitis, and skin infections. Herein, we evaluated the antiproliferative action of the dichloromethane fraction from M. caesalpiniifolia (DFMC) stem bark on murine tumor cells and the in vivo toxicogenetic profile. Initially, the cytotoxic activity of DFMC on primary cultures of Sarcoma 180 (S180) cells by Alamar Blue, trypan, and cytokinesis block micronucleus (CBMN) assays was assessed after 72 h of exposure, followed by the treatment of S180-bearing Swiss mice for 7 days, physiological investigations, and DNA/chromosomal damage. DFMC and betulinic acid revealed similar in vitro antiproliferative action on S180 cells and induced a reduction in viable cells, induced a reduction in viable cells and caused the emergence of bridges, buds, and morphological features of apoptosis and necrosis. S180-transplanted mice treated with DFMC (50 and 100 mg/kg/day), a betulinic acid-rich dichloromethane, showed for the first time in vivo tumor growth reduction (64.8 and 80.0%) and poorer peri- and intratumor quantities of vessels. Such antiproliferative action was associated with detectible side effects (loss of weight, reduction of spleen, lymphocytopenia, and neutrophilia and increasing of GOT and micronucleus in bone marrow), but preclinical general anticancer properties of the DFMC were not threatened by toxicological effects, and these biomedical discoveries validate the ethnopharmacological reputation of Mimosa species as emerging phytotherapy sources of lead molecules.


Author(s):  
Hongjuan Wang ◽  
Hongxia Wang ◽  
Ling Ge ◽  
Yanying Zhao ◽  
Kongxi Zhu ◽  
...  

The main purpose of this study was to examine the anticancer effects of betulinic acid – a plant triterpene, against gastric cancer, along with demonstrating its underlying mechanism. The MTT assay and clonogenic assays were executed to assess cellular viability in control and betulinic acid treated cells. Transmission electron microscopy and western blotting were implemented to study autophagy stimulation by betulinic acid. The ERK/MEK signaling pathway was monitored by western blotting. Migration and invasion of SGC-7901 cells was investigated via transwell chamber assay. Results of this investigation indicated that betulinic acid induced remarkable cytotoxicity against gastric cancer SGC-7901 cells, in contrast to normal gastric GES-1 cells. The cytotoxicity of betulinic acid was observed due to its autophagy stimulation tendency in target cells. Autophagic cell death was supported by the data attained from western blotting showing enhanced LC3-II, and lowered LC3-I and p62 expressions. Moreover, betulinic acid was observed to block the ERK/MEK signaling pathway in SGC-7901 cells, which was associated with declined levels of expressions of the phosphorylated ERK and MEK proteins. Finally, the transwell chamber assay revealed a potential lowering of migration and invasion by betulinic acid in the SGC-7901 cells. In conclusion, these results demonstrated that betulinic acid exhibited significant anti-gastric cancer effects mediated via autophagy induction, blocking of ERK/MEK signaling and suppression of migration and invasion. Therefore, betulinic acid may prove as a lead molecule in gastric cancer management and research.


Sign in / Sign up

Export Citation Format

Share Document