The Improved Personnel Location Algorithm Based on RSSI

2013 ◽  
Vol 712-715 ◽  
pp. 2003-2006
Author(s):  
Sheng Mei Zhou ◽  
Ting Lei Huang

In the process of that based on the RSSI received signal strength indicator technique, resulting in the positioning accuracy is so low, since the simple RSSI, multipath, diffraction and non line of sight and other factors. In order to achieve higher accuracy node localization in wireless sensor, the paper is proposed based on the probability of recycling triangle centroid location algorithm in the RSSI technique,The probability of the cycle to handle triangle centroid localization algorithm. Through the Matlab simulation, compared with the traditional triangle centroid localization algorithm, the error is significantly reduced and positioning accuracy improved when the anchor point number exceeds a certain number.

2012 ◽  
Vol 236-237 ◽  
pp. 1010-1014
Author(s):  
Ning Hui He ◽  
Hong Sheng Li ◽  
Guang Rong Bian

This paper introduces the first wireless sensor network node localization in two ways, one is based on the RSSI ranging approach, and the other is based on the weighted centric location algorithm, as a result of environmental factors, the same RSSI value the distance ,but the corresponding values are not always the same, these two methods do not consider the environmental impact to the RSSI value. Therefore, we consider combining the distance and signal strength information as a reference to correct each beacon node weights, in order to improve positioning accuracy.


2013 ◽  
Vol 347-350 ◽  
pp. 1860-1863
Author(s):  
Kun Zhang ◽  
Can Zhang ◽  
Chen He ◽  
Xiao Hu Yin

As the development of technology, the wireless sensor networks (WSN) have a wide spread usage. And people pay more attention on the localization algorithm, as the key technology of WSN, there have been many method of self-localization. The concentric anchor-beacons (CAB) location algorithm is one of the most practical one, which is a range-free WSN localization algorithm. In order to further improve the accuracy of localizing nodes, an improved CAB location algorithm base on Received Signal Strength Indicator (RSSI) is proposed. The RSSI is used to measure the distance between two anchors and compare with the practical distance. Then the environment between two anchors can be simulated. At last the communication radius of anchors can be optimized. And the common area of the anchors in the process of localizing nodes can be reduced. Then the accuracy is improved. By simulation, the localization accuracy is improved when the anchors numbers is more than a certain percentage.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2991 ◽  
Author(s):  
Jingyu Hua ◽  
Yejia Yin ◽  
Weidang Lu ◽  
Yu Zhang ◽  
Feng Li

The problem of target localization in WSN (wireless sensor network) has received much attention in recent years. However, the performance of traditional localization algorithms will drastically degrade in the non-line of sight (NLOS) environment. Moreover, variable methods have been presented to address this issue, such as the optimization-based method and the NLOS modeling method. The former produces a higher complexity and the latter is sensitive to the propagating environment. Therefore, this paper puts forward a simple NLOS identification and localization algorithm based on the residual analysis, where at least two line-of-sight (LOS) propagating anchor nodes (AN) are required. First, all ANs are grouped into several subgroups, and each subgroup can get intermediate position estimates of target node through traditional localization algorithms. Then, the AN with an NLOS propagation, namely NLOS-AN, can be identified by the threshold based hypothesis test, where the test variable, i.e., the localization residual, is computed according to the intermediate position estimations. Finally, the position of target node can be estimated by only using ANs under line of sight (LOS) propagations. Simulation results show that the proposed algorithm can successfully identify the NLOS-AN, by which the following localization produces high accuracy so long as there are no less than two LOS-ANs.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4179 ◽  
Author(s):  
Stelian Dolha ◽  
Paul Negirla ◽  
Florin Alexa ◽  
Ioan Silea

Wireless Sensor Networks (WSN) are widely used in different monitoring systems. Given the distributed nature of WSN, a constantly increasing number of research studies are concentrated on some important aspects: maximizing network autonomy, node localization, and data access security. The node localization and distance estimation algorithms have, as their starting points, different information provided by the nodes. The level of signal strength is often such a starting point. A system for Received Signal Strength Indicator (RSSI) acquisition has been designed, implemented, and tested. In this paper, experiments in different operating environments have been conducted to show the variation of Received Signal Strength Indicator (RSSI) metric related to distance and geometrical orientation of the nodes and environment, both indoor and outdoor. Energy aware data transmission algorithms adjust the power consumed by the nodes according to the relative distance between the nodes. Experiments have been conducted to measure the current consumed by the node depending on the adjusted transmission power. In order to use the RSSI values as input for distance or location detection algorithms, the RSSI values can’t be used without intermediate processing steps to mitigate with the non-linearity of the measured values. The results of the measurements confirmed that the RSSI level varies with distance, geometrical orientation of the sensors, and environment characteristics.


2015 ◽  
Vol 740 ◽  
pp. 823-829
Author(s):  
Meng Long Cao ◽  
Chong Xin Yang

Firstly, the characteristics of regular Zigbee localization algorithms-the received signal strength indicator algorithm (RSSI) and the weighted centroid localization algorithm are introduced. Then, the factors of the errors existing in the aforementioned algorithms are analyzed. Based on these above, the improved RSSI algorithm-correction geometric measurement based on weighted is proposed. Finally, utilizing this algorithm to design and implement the localization nodes, which have the CC2431 wireless microcontroller on them. The simulation and experimental results show that the accuracy of this localization algorithm improved about 2%, comparing with the regular algorithms.


2013 ◽  
Vol 475-476 ◽  
pp. 579-582 ◽  
Author(s):  
Dong Yao Zou ◽  
Teng Fei Han ◽  
Dao Li Zheng ◽  
He Lv

The node localization is one of the key technologies in wireless sensor networks. To the accurate positioning of the nodes as the premise and foundation, this paper presents a centroid localization algorithm based on Cellular network. First, the anchor nodes are distributed in a regular hexagonal cellular network. Unknown nodes collect the RSSI of the unknown nodes nearby, then select the anchor nodes whose RSSI is above the threshold. Finally, the average of these anchor nodes coordinates is the positioning results. MATLAB simulation results show that localization algorithm is simple and effective, it applies to the need for hardware is relatively low.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2945 ◽  
Author(s):  
Long Cheng ◽  
Liang Feng ◽  
Yan Wang

Wireless sensor networks (WSNs) have become a popular research subject in recent years. With the data collected by sensors, the information of a monitored area can be easily obtained. As a main contribution of WSN localization is widely applied in many fields. However, when the propagation of signals is obstructed there will be some severe errors which are called Non-Line-of-Sight (NLOS) errors. To overcome this difficulty, we present a residual analysis-based improved particle filter (RAPF) algorithm. Because the particle filter (PF) is a powerful localization algorithm, the proposed algorithm adopts PF as its main body. The idea of residual analysis is also used in the proposed algorithm for its reliability. To test the performance of the proposed algorithm, a simulation is conducted under several conditions. The simulation results show the superiority of the proposed algorithm compared with the Kalman Filter (KF) and PF. In addition, an experiment is designed to verify the effectiveness of the proposed algorithm in an indoors environment. The localization result of the experiment also confirms the fact that the proposed algorithm can achieve a lower localization error compared with KF and PF.


Sign in / Sign up

Export Citation Format

Share Document