Study on Streamline Distribution of Horizontal Linear well Pattern in Anisotropic Reservoirs

2013 ◽  
Vol 734-737 ◽  
pp. 1468-1471
Author(s):  
Cheng Lin Zhang

In order to visually reflect the characteristics of flowing tracks of horizontal linear well pattern in anisotropic reservoirs, By means of the source-sink theory, Newmans product method and potential superposition principle, the transient flow pressure distribution equation of horizontal well pattern is obtained, the calculation method of seepage field streamline is presented, and the distribution law for streamline is studied. It is shown that the streamline of horizontal linear well pattern is sensitive to the reservoir anisotropic and horizontal well length. In the pattern of well, there is a reasonable well spacing and row spacing under a given degree of anisotropy, which can maximize the effect of displacement and the productivity of horizontal well. The drainage area of production well will increase with the increasing of horizontal well length, which can improve the productivity of horizontal well. The streamline plots generated by this method can provide a scientific basis for the design of horizontal development well pattern, analysis of remain oil and optimization of injection strategy in anisotropic reservoirs.

1999 ◽  
Vol 122 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Suwan Umnuayponwiwat ◽  
Erdal Ozkan

This work presents a model to investigate the inflow performance relationships (IPR) of horizontal and vertical wells in a multi-well pattern. The model can be used to compute the overall and individual well performances. It is shown that stabilized IPRs may not be sufficient for the evaluation of horizontal well performances due to prolonged transient flow periods. The results presented in this paper clearly indicate that inflow performance of wells in a multi-well pattern is a dynamic concept; and, especially in the prediction of future performances, dynamic rather than static IPR models should be used. [S0195-0738(00)00801-3]


2021 ◽  
pp. 014459872110052
Author(s):  
Xizhe Li ◽  
Zhengming Yang ◽  
Shujun Li ◽  
Wei Huang ◽  
Jianfei Zhan ◽  
...  

Low-permeability to ultralow-permeability reservoirs of the China National Petroleum Corporation are crucial to increase the reserve volumes and the production of crude oil in the present and future times. This study aimed to address the two major technical bottlenecks faced by the low-permeability to ultralow-permeability reservoirs by a comprehensive use of technologies and methods such as rate-controlled mercury injection, nuclear magnetic resonance, conventional logging, physical simulation, numerical simulation, and field practices. The reservoir characteristics of low-permeability to ultralow-permeability reservoirs were first analyzed. The water flooding development adjustment mode in the middle and high water-cut stages for the low-permeability to ultralow-permeability reservoirs, where water is injected along the fracture zone and lateral displacement were established. The formation mechanism and distribution principles of dynamic fractures, residual oil description, and expanding sweep volume were studied. The development mode for Type II ultralow-permeability reservoirs with a combination of horizontal well and volume fracturing was determined; this led to a significant improvement in the initial stages of single-well production. The volume fracturing core theory and optimization design, horizontal well trajectory optimization adjustment, horizontal well injection-production well pattern optimization, and horizontal well staged fracturing suitable for reservoirs with different characteristics were developed. This understanding of the reservoir characteristics and the breakthrough of key technologies for effective development will substantially support the oil-gas valent weight of the Changqing Oilfield to exceed 50 million tons per year, the stable production of the Daqing Oilfield with 40 million tons per year (oil-gas valent weight), and the realization of 20 million tons per year (oil-gas valent weight) in the Xinjiang Oilfield.


2021 ◽  
Author(s):  
A V Ogbamikhumi ◽  
E S Adewole

Abstract Dimensionless pressure gradients and dimensionless pressure derivatives characteristics are studied for horizontal and vertical wells completed within a pair of no-flow boundaries inclined at a general angle ‘θ’. Infinite-acting flow solution of each well is utilized. Image distances as a result of the inclinations are considered. The superposition principle is further utilized to calculate total pressure drop due to flow from both object and image wells. Characteristic dimensionless flow pressure gradients and pressure derivatives for the wells are finally determined. The number of images formed due to the inclination and dimensionless well design affect the dimensionless pressure gradients and their derivatives. For n images, shortly after very early time for each inclination, dimensionless pressure gradients of 1.151(N+1)/LD for the horizontal well and 1.151(N+1) for vertical well are observed. Dimensionless pressure derivative of (N+1)/2LD are observed for central and off-centered horizontal well locations, and (N+1)/2 for vertical well are observed. Central well locations do not affect horizontal well productivity for all the inclinations. The magnitudes of dimensionless pressure drop and dimensionless pressure derivatives are maximum at the farthest image distances, and are unaffected by well stand-off for the horizontal well.


Sign in / Sign up

Export Citation Format

Share Document