Steam flooding and oil recovery by different types of horizontal well pattern

2017 ◽  
Vol 35 (5) ◽  
pp. 479-487 ◽  
Author(s):  
Haitao Wang ◽  
Hongfu Fan
2012 ◽  
Vol 524-527 ◽  
pp. 1634-1638
Author(s):  
Ping Yue ◽  
Zhi Min Du ◽  
Xiao Fan Chen ◽  
Li Lu

For the trends of global climate warming, it is great important to implement the Carbon capture and storage (CCS) technology. This paper describes the numerical simulation of CO2 displacement enhanced oil recovery (EOR) in M reservoir. The M reservoir is an extra-thick buried hill fractured reservoir, which use overlap alternative horizontal well pattern to produce. Considering the time-varying effects of fracture’s porosity and permeability parameters, combining the develop dynamic and the diversification of physical property parameters of fractured formation, use the dual porosity dual permeability model and the three-dimensional components simulator to simulate the develop process. By CO2 WAG orthogonal experiment design, can simulate and predict the development effect of fractured buried hill reservoir affected by factors such as: different production and injection well pattern, injection intensity, gas water slug ratio, alternating cycle and so on. The results show that in the process of CO2 WAG can significantly reduce the risk of gas breakthrough by overlap alternative horizontal well pattern, and reduce the negative impact by fracture properties, also can improve EOR and CO2 sequestration effectively. On this basis, this paper evaluates the suitability of WAG development methods to fractured buried hill reservoir with overlap alternative horizontal well pattern, also optimizes the reasonable development plan for M reservoir.


2021 ◽  
pp. 014459872110052
Author(s):  
Xizhe Li ◽  
Zhengming Yang ◽  
Shujun Li ◽  
Wei Huang ◽  
Jianfei Zhan ◽  
...  

Low-permeability to ultralow-permeability reservoirs of the China National Petroleum Corporation are crucial to increase the reserve volumes and the production of crude oil in the present and future times. This study aimed to address the two major technical bottlenecks faced by the low-permeability to ultralow-permeability reservoirs by a comprehensive use of technologies and methods such as rate-controlled mercury injection, nuclear magnetic resonance, conventional logging, physical simulation, numerical simulation, and field practices. The reservoir characteristics of low-permeability to ultralow-permeability reservoirs were first analyzed. The water flooding development adjustment mode in the middle and high water-cut stages for the low-permeability to ultralow-permeability reservoirs, where water is injected along the fracture zone and lateral displacement were established. The formation mechanism and distribution principles of dynamic fractures, residual oil description, and expanding sweep volume were studied. The development mode for Type II ultralow-permeability reservoirs with a combination of horizontal well and volume fracturing was determined; this led to a significant improvement in the initial stages of single-well production. The volume fracturing core theory and optimization design, horizontal well trajectory optimization adjustment, horizontal well injection-production well pattern optimization, and horizontal well staged fracturing suitable for reservoirs with different characteristics were developed. This understanding of the reservoir characteristics and the breakthrough of key technologies for effective development will substantially support the oil-gas valent weight of the Changqing Oilfield to exceed 50 million tons per year, the stable production of the Daqing Oilfield with 40 million tons per year (oil-gas valent weight), and the realization of 20 million tons per year (oil-gas valent weight) in the Xinjiang Oilfield.


2021 ◽  
Author(s):  
Tanya Ann Mathews ◽  
Alex J.Cortes ◽  
Richard Bryant ◽  
Berna Hascakir

Abstract Steam injection is an effective heavy oil recovery method, however, poses several environmental concerns. Solvent injection methods are introduced in an attempt to combat these environmental concerns. This paper evaluates the effectiveness of a new solvent (VisRed) in the recovery of a Canadian bitumen and compares its results with toluene. While VisRed is selected due to its high effectiveness as a viscosity reducer even at very low concentrations, toluene is selected due to its high solvent power. Five core flooding experiments were conducted; E1 (Steam flooding), E2 (VisRed flooding), E3 (Toluene flooding), E4 (Steam + Toluene flooding), and E5 (Steam + VisRed flooding). Core samples were prepared by saturating 60% of the pore space with oil samples and 40% with deionized water. The solvents were injected at a 2 ml/min rate, while steam was injected at a 18 ml/min cold water equivalent rate. Produced oil and water samples were collected every 20 min during every experiment. The oil recovery efficiencies of the core flood experiments were analyzed by the emulsion characterization in the produced fluids and the residual oil analysis on the spent rock samples. The best oil recovery of ~30 vol % was obtained for E2 (VisRed) in which VisRed was injected alone. Although similar cumulative recoveries were obtained both for E2 (VisRed) and E3 (Toluene), the amount of VisRed injected [~1 pore volumes (PV)] was half the volume required by toluene (~2 PV). The produced oil quality variations are mainly due to the formation of the water-in-oil emulsions during mainly steam processes (E1, E4, and E5). The increased amount of the polar fractions in the produced oil enhances the formation of the emulsions. These polar fractions are namely asphaltenes and resins. As the amount of the polar fractions in the produce oil increases, more water-in-oil emulsion formation is observed due to the polar-polar interaction between crude oil fractions and water. Consequently, E1 and E5 resulted in more water in oil emulsions. The cost analysis also shows the effectiveness of solvent recovery over steam-solvent recovery processes.


2012 ◽  
Vol 594-597 ◽  
pp. 2541-2544
Author(s):  
Xiao Hui Wu ◽  
Kao Ping Song ◽  
Chi Dong ◽  
Ji Cheng Zhang ◽  
Jing Fu Deng

As line well pattern is the main development technique in the thin and poor oil layers of Daqing Oilfield South West Ⅱ PⅠ group, the layers have been idle and the degree of reserve recovery is far less than the region level. In response to these problems, we analyzed the balanced flood performance of various layers and the remaining oil distribution through numerical simulation technique. It shows that, the main remaining oil type of intended layers is caused by voidage-injection imperfection. Considering the needs of the follow-up infill well pattern and tertiary oil recovery, we decided to keep the well network independent and integrated without disturbing the pattern configuration and main mining object of various sets of well pattern. Finally we confirmed to perforate-adding the first infill wells of intended layers to consummate the water flooding regime. Through analyzing the production target of different well pattern optimization programs relatively, it shows that the best program has regular well pattern and large drilled thickness.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Zhanxi Pang ◽  
Peng Qi ◽  
Fengyi Zhang ◽  
Taotao Ge ◽  
Huiqing Liu

Heavy oil is an important hydrocarbon resource that plays a great role in petroleum supply for the world. Co-injection of steam and flue gas can be used to develop deep heavy oil reservoirs. In this paper, a series of gas dissolution experiments were implemented to analyze the properties variation of heavy oil. Then, sand-pack flooding experiments were carried out to optimize injection temperature and injection volume of this mixture. Finally, three-dimensional (3D) flooding experiments were completed to analyze the sweep efficiency and the oil recovery factor of flue gas + steam flooding. The role in enhanced oil recovery (EOR) mechanisms was summarized according to the experimental results. The results show that the dissolution of flue gas in heavy oil can largely reduce oil viscosity and its displacement efficiency is obviously higher than conventional steam injection. Flue gas gradually gathers at the top to displace remaining oil and to decrease heat loss of the reservoir top. The ultimate recovery is 49.49% that is 7.95% higher than steam flooding.


2021 ◽  
Vol 888 ◽  
pp. 111-117
Author(s):  
Yi Zhao ◽  
De Yin Zhao ◽  
Rong Qiang Zhong ◽  
Li Rong Yao ◽  
Ke Ke Li

With the continuous exploitation of most reservoirs in China, the proportion of heavy oil reservoirs increases, and the development difficulty is greater than that of conventional reservoirs. In view of the important subject of how to improve the recovery factor of heavy oil reservoir, the thermal recovery technology (hot water flooding, steam flooding, steam assisted gravity drainage SAGD and steam huff and puff) and cold recovery technology (chemical flooding, electromagnetic wave physical flooding and microbial flooding) used in the development of heavy oil reservoir are summarized. The principle of action is analyzed, and the main problems restricting heavy oil recovery are analyzed The main technologies of heavy oil recovery are introduced from the aspects of cold recovery and hot recovery. Based on the study of a large number of literatures, and according to the development trend of heavy oil development, suggestions and prospects for the future development direction are put forward.


Sign in / Sign up

Export Citation Format

Share Document