Evaluation of Inflow Performance of Multiple Horizontal Wells in Closed Systems

1999 ◽  
Vol 122 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Suwan Umnuayponwiwat ◽  
Erdal Ozkan

This work presents a model to investigate the inflow performance relationships (IPR) of horizontal and vertical wells in a multi-well pattern. The model can be used to compute the overall and individual well performances. It is shown that stabilized IPRs may not be sufficient for the evaluation of horizontal well performances due to prolonged transient flow periods. The results presented in this paper clearly indicate that inflow performance of wells in a multi-well pattern is a dynamic concept; and, especially in the prediction of future performances, dynamic rather than static IPR models should be used. [S0195-0738(00)00801-3]

2021 ◽  
Author(s):  
A V Ogbamikhumi ◽  
E S Adewole

Abstract Dimensionless pressure gradients and dimensionless pressure derivatives characteristics are studied for horizontal and vertical wells completed within a pair of no-flow boundaries inclined at a general angle ‘θ’. Infinite-acting flow solution of each well is utilized. Image distances as a result of the inclinations are considered. The superposition principle is further utilized to calculate total pressure drop due to flow from both object and image wells. Characteristic dimensionless flow pressure gradients and pressure derivatives for the wells are finally determined. The number of images formed due to the inclination and dimensionless well design affect the dimensionless pressure gradients and their derivatives. For n images, shortly after very early time for each inclination, dimensionless pressure gradients of 1.151(N+1)/LD for the horizontal well and 1.151(N+1) for vertical well are observed. Dimensionless pressure derivative of (N+1)/2LD are observed for central and off-centered horizontal well locations, and (N+1)/2 for vertical well are observed. Central well locations do not affect horizontal well productivity for all the inclinations. The magnitudes of dimensionless pressure drop and dimensionless pressure derivatives are maximum at the farthest image distances, and are unaffected by well stand-off for the horizontal well.


2021 ◽  
Author(s):  
Andrew Boucher ◽  
Josef Shaoul ◽  
Inna Tkachuk ◽  
Mohammed Rashdi ◽  
Khalfan Bahri ◽  
...  

Abstract A gas condensate field in the Sultanate of Oman has been developed since 1999 with vertical wells, with multiple fractures targeting different geological units. There were always issues with premature screenouts, especially when 16/30 or 12/20 proppant were used. The problems placing proppant were mainly in the upper two units, which have the lowest permeability and the most heterogeneous lithology, with alternating sand and shaly layers between the thick competent heterolith layers. Since 2015, a horizontal well pilot has been under way to determine if horizontal wells could be used for infill drilling, focusing on the least depleted units at the top of the reservoir. The horizontal wells have been plagued with problems of high fracturing pressures, low injectivity and premature screenouts. This paper describes a comprehensive analysis performed to understand the reasons for these difficulties and to determine how to improve the perforation interval selection criteria and treatment approach to minimize these problems in future horizontal wells. The method for improving the success rate of propped fracturing was based on analyzing all treatments performed in the first seven horizontal wells, and categorizing their proppant placement behavior into one of three categories (easy, difficult, impossible) based on injectivity, net pressure trend, proppant pumped and screenout occurrence. The stages in all three categories were then compared with relevant parameters, until a relationship was found that could explain both the successful and unsuccessful treatments. Treatments from offset vertical wells performed in the same geological units were re-analyzed, and used to better understand the behavior seen in the horizontal wells. The first observation was that proppant placement challenges and associated fracturing behavior were also seen in vertical wells in the two uppermost units, although to a much lesser extent. A strong correlation was found in the horizontal well fractures between the problems and the location of the perforated interval vertically within this heterogeneous reservoir. In order to place proppant successfully, it was necessary to initiate the fracture in a clean sand layer with sufficient vertical distance (TVT) to the heterolith (barrier) layers above and below the initiation point. The thickness of the heterolith layers was also important. Without sufficient "room" to grow vertically from where it initiates, the fracture appears to generate complex geometry, including horizontal fracture components that result in high fracturing pressures, large tortuosity friction, limited height growth and even poroelastic stress increase. This study has resulted in a better understanding of mechanisms that can make hydraulic fracturing more difficult in a horizontal well than a vertical well in a laminated heterogeneous low permeability reservoir. The guidelines given on how to select perforated intervals based on vertical position in the reservoir, rather than their position along the horizontal well, is a different approach than what is commonly used for horizontal well perforation interval selection.


2021 ◽  
Vol 2 (1) ◽  
pp. 67-76
Author(s):  
T. N. Nzomo ◽  
S. E Adewole ◽  
K. O Awuor ◽  
D. O. Oyoo

Horizontal wells are more productive compared to vertical wells if their performance is optimized. For a completely bounded oil reservoir, immediately the well is put into production, the boundaries of the oil reservoir have no effect on the flow. The pressure distribution thus can be approximated with this into consideration. When the flow reaches either the vertical or the horizontal boundaries of the reservoir, the effect of the boundaries can be factored into the pressure distribution approximation. In this paper we consider the above cases and present a detailed mathematical model that can be used for short time approximation of the pressure distribution for a horizontal well with sealed boundaries. The models are developed using appropriate Green’s and source functions. In all the models developed the effect of the oil reservoir boundaries as well as the oil reservoir parameters determine the flow period experienced. In particular, the effective permeability relative to horizontal anisotropic permeability, the width and length of the reservoir influence the pressure response. The models developed can be used to approximate and analyze the pressure distribution for horizontal wells during a short time of production. The models presented show that the dimensionless pressure distribution is affected by the oil reservoir geometry and the respective directional permeabilities.


2022 ◽  
Author(s):  
Josef R. Shaoul ◽  
Jason Park ◽  
Andrew Boucher ◽  
Inna Tkachuk ◽  
Cornelis Veeken ◽  
...  

Abstract The Saih Rawl gas condensate field has been producing for 20 years from multiple fractured vertical wells covering a very thick gross interval with varying reservoir permeability. After many years of production, the remaining reserves are mainly in the lowest permeability upper units. A pilot program using horizontal multi-frac wells was started in 2015, and five wells were drilled, stimulated and tested over a four-year period. The number of stages per horizontal well ranged from 6 to 14, but in all cases production was much less than expected based on the number of stages and the production from offset vertical wells producing from the same reservoir units with a single fracture. The scope of this paper is to describe the work that was performed to understand the reason for the lower than expected performance of the horizontal wells, how to improve the performance, and the implementation of those ideas in two additional horizontal wells completed in 2020. The study workflow was to perform an integrated analysis of fracturing, production and well test data, in order to history match all available data with a consistent reservoir description (permeability and fracture properties). Fracturing data included diagnostic injections (breakdown, step-rate test and minifrac) and main fracture treatments, where net pressure matching was performed. After closure analysis (ACA) was not possible in most cases due to low reservoir pressure and absence of downhole gauges. Post-fracture well test and production matching was performed using 3D reservoir simulation models including local grid refinement to capture fracture dimensions and conductivity. Based on simulation results, the effective propped fracture half-length seen in the post-frac production was extremely small, on the order of tens of meters, in some of the wells. In other wells, the effective fracture half-length was consistent with the created propped half-length, but the fracture conductivity was extremely small (finite conductivity fracture). The problems with the propped fractures appear to be related to a combination of poor proppant pack cleanup, low proppant concentration and small proppant diameter, compounded by low reservoir pressure which has a negative impact on proppant regained permeability after fracturing with crosslinked gel. Key conclusions from this study are that 1) using the same fracture design in a horizontal well with transverse fractures will not give the same result as in a vertical well in the same reservoir, 2) the effect of depletion on proppant pack cleanup in high temperature tight gas reservoirs appears to be very strong, requiring an adjustment in fracture design and proppant selection to achieve reasonable fracture conductivity, and 3) achieving sufficient effective propped length and height is key to economic production.


Author(s):  
Tao Zhu ◽  
Jing Lu

Many gas reservoirs are with bottom water drive. In order to prevent or delay unwanted water into the wellbore, the producing wells are often completed as partially penetrating vertical wells, and more and more horizontal wells have been drilled in recent years in bottom water drive gas reservoirs to reduce water coning and increase productivity. For a well, non-Darcy flow is inherently a near wellbore phenomenon. In spite of the considerable study that non-Darcy behavior of fully penetrating vertical wells, there has been no study of a partially penetrating vertical well or a horizontal well in a gas reservoir with bottom water drive. This paper presents new binomial deliverability equations for partially penetrating vertical gas wells and horizontal gas wells, assuming that only radial flow occurs in the near wellbore non-Darcy’s flow domain. The inflow performance of a vertical gas well is compared with that of a horizontal gas well. The proposed equations can account for the advantages of horizontal gas wells.


2014 ◽  
Vol 955-959 ◽  
pp. 3484-3488
Author(s):  
Guang Zhong Lv ◽  
Jiang Qiao Zhang

An electrolytic simulation experiment was designed according to the water and electricity resembling principle. The pressure contour distribution and the effects of the productivity of the fractured horizontal well were experimentally studied under the flooding. The equal pressure lines around horizontal wells were elliptic, and the equal pressure lines were Parallelled distribution in the fracture of horizontal well, Flow states was unidirectional flow, indicating staged fracturing of horizontal well by improving Percolation way greatly reduce seepage resistance. Under the experimental conditions, staged fracturing horizontal waterflooding development best combination of parameters: row and staggered well pattern, penetration ratio of horizontal section was 0.8, the number of fractures should be 6 (fracture space was 91m), penetration ratio of fracture was 0.25, the angle between the fracture and horizontal well is 90 degree. The importance ranking of productivity was horizontal length, the number of fractures (fracture space ),fracture length, he angle between the fracture and horizontal well and well-pattern type.


2021 ◽  
Author(s):  
Raed Mohamed Elmohammady ◽  
Mostafa Mahrous Ali ◽  
Hassan Elsayed Salem

Abstract Reservoir development in Safa Formation requires a lot of vertical wells in order to exploit the gas reserve in the formation which means high cost is needed because the heterogeneity in the formation is noticed due to sandstone is pinched out in different locations of the reservoir. So, vertical well may be sweep from limited area of the reservoir that make safa formation has less priority for new activities. Form all of that the plan was drilling horizontal wells with long horizontal section to recover great volume of gas from reservoir. In addition to reduction in number of drilling vertical wells in the reservoir. In contrast, the major constrains is the small thickness of reservoir that make drilling horizontal section is very difficult. The main characteristics of safa formation is non continuous sandstone in the whole reservoir with great heterogeneity that not controlled by any points in the reservoir for the distribution of sandstone. In addition, there are a lot of locations in safa formation that include lean intervals which have kaolinite, elite that are not capable for produce from sand. In other hand, there is another constrains beside the discontinuity of sand production is the heterogeneity of permeability properties of reservoir that change in wide range across the reservoir with minimum range of 0.01 md and increase in some locations to reach 100 md. From all of the previous, it is a big challenge in drilling horizontal wells with long horizontal section in thin reservoir thickness in order to access the best reservoir permeability and optimize the number of drilling wells based on this concept. This paper will discuss case study of unlock and development long horizontal section in gas reservoir characterized by its tightness. The main goal of this horizontal well to recover ultimate gas reserve from safa formation by horizontal section reached to 2000 meter with a challenge because it is abnormal to drill this large horizontal section in western desert of Egypt in reservoir thickness range from 5 meter to 30 meter as prognosis from other offset wells in case of there is no pitchout of the sandstone. After Drilling of first horizontal well, the results were unexpected because the well penetrates a large horizontal section of sandstone in safa formation. This section reached to around 1750 meter with average reservoir permeability between 10 – 20 md and the reservoir porosity about 13% with good hydrocarbon saturation that changes along this section from 75% to 80%. So, this well put on production with very stable gas production rate 20 MMSCFD. In this paper will discuss in details the different challenge that faced to unlock this tight gas reservoir and will discuss the performance of horizontal well production. In this paper will discuss the first horizontal well in safa formation and the longest horizontal section in western desert of Egypt in tight gas formation that has a lot of challenges and risks are faced. After success the concept of horizontal well in heterogeneous reservoir, the next plan is the development of this reservoir using several horizontal wells to recover the ultimate recovery of gas from safa formation.


SPE Journal ◽  
2012 ◽  
Vol 18 (02) ◽  
pp. 219-232 ◽  
Author(s):  
Huiqing Liu ◽  
Jing Wang ◽  
Jian Zheng ◽  
Ying Zhang

Summary Horizontal and multibranch wells are likely to become the major means of modern exploitation strategies; inflow performances for these wells are needed. Because this paper considers the finite conductivity of a horizontal well, it establishes the inflow performance relationships (IPRs) for different branch configurations of horizontal wells. We find that the IPR of a horizontal well presents nonlinear characteristics and is similar to Vogel's equation, which has been used extensively and successfully for analyzing the IPR of a vertical well in a solution-gas-drive reservoir. Instead of the effect of a two-phase (oil and gas) flow in a reservoir described by Vogel's equation, the nonlinear characteristics of horizontal wells are mainly the result of pressure drops caused by friction, acceleration, and gravity along the horizontal wellbore. The nonlinearity coefficient presents the pressure drop along the major branch, and it is a function of major-wellbore length, major-wellbore diameter, oil viscosity, and relative roughness. Then, the horizontal-well IPR is used to study the performance of the pinnate-branch horizontal well and the radial-branch (horizontal lateral) well. The branch number, branch length, major-wellbore length, major-wellbore diameter, oil viscosity, and relative roughness are combined into grouped parameters to present the effect on the deliverability incremental ratio JH and the nonlinearity coefficient ratio Rv of the pinnate-branch horizontal well to the conventional horizontal well, which show regression relationships with the grouped parameters for pinnate-branch horizontal wells. In addition, another binomial relationship between the deliverability incremental ratio JV and the grouped parameter combined by branch number, branch length, and equivalent oil drainage diameter is obtained for radial-branch (horizontal lateral) wells. The new IPR also covers conventional horizontal wells and vertical wells (with no branch) because the deliverability incremental ratios JH and JV in both cases are unity. The IPR is very valuable for calculating the productivity of horizontal wells, pinnate-branch horizontal wells, and radial-branch wells.


2021 ◽  
Author(s):  
Leila Zeinali ◽  
Christine Ehlig-Economides ◽  
Michael Nikolaou

Abstract An Enhanced Geothermal System (EGS) uses flow through fractures in an effectively impermeable high-temperature rock formation to provide sustainable and affordable heat extraction that can be employed virtually anywhere with no need for a geothermal reservoir. The problem is that there is no commercial application of this technology. The three-well pattern introduced in this paper employs a multiple transverse fractured horizontal well (MTFHW) drilled and fractured in an effectively impermeable high-temperature formation. Two parallel horizontal wells drilled above and below or on opposing sides of the MTFHW have trajectories that intersect its created fractures. Fluid injected in the MTFHW flows through the fractures and horizontal wells, thus extracting heat from the surrounding high-temperature rock. This study aims to find the most cost-effective well and fracture spacing for this pattern to supply hot fluid to a 20-megawatt power plant. Analytical and numerical models compare heat transfer behavior for a single fracture unit in an MTFHW that is then replicated along with the horizontal well pattern(s). The Computer Modeling Group (CMG) STARS simulator is used to model the circulation of cold water injected into the center of a radial transverse hydraulic fracture and produced from two horizontal wells. Key factors to the design include formation temperature, the flow rate in fractures, the fractured radius, spacing, heat transfer, and pressure loss along the wells. The Aspen HYSYS software is used to model the geothermal power plant, and heat transfer and pressure loss in wells and fractures. The comparison between analytical and numerical models showed the simplified analytical model provides overly optimistic results and indicates the need for a numerical model. Sensitivity studies using the numerical model vary the key design factors and reveal how many fractures the plant requires. The economic performance of several scenarios was investigated to minimize well drilling and completion pattern costs. This study illustrates the viability of applying known and widely used well technologies in an enhanced geothermal system.


2001 ◽  
Vol 4 (04) ◽  
pp. 260-269 ◽  
Author(s):  
Erdal Ozkan

Summary Most of the conventional horizontal-well transient-response models were developed during the 1980's. These models visualized horizontal wells as vertical wells rotated 90°. In the beginning of the 1990's, it was realized that horizontal wells deserve genuine models and concepts. Wellbore conductivity, nonuniform skin effect, selective completion, and multiple laterals are a few of the new concepts. Although well-established analysis procedures are yet to be developed, some contemporary horizontal-well models are now available. The contemporary models, however, are generally sophisticated. The basic objective of this paper is to answer two important questions:When should we use the contemporary models? andHow much error do we make by using the conventional models? This objective is accomplished by considering examples and comparing the results of the contemporary and conventional approaches. Introduction Since the early 1980's, horizontal wells have been extremely popular in the oil industry and have gained an impeccable standing among the conventional well completions. The rapid increase in the applications of horizontal-well technology brought an impetuous development of the procedures to evaluate the performances of horizontal wells. These procedures, however, used the vertical-well concepts almost indiscriminately to analyze the horizontal-well transient-pressure responses.1–14 Among these concepts were 1) the assumptions of a line-source well and an infinite-conductivity wellbore, 2) a single lateral withdrawing fluids along its entire length, and 3) a skin region that is uniformly distributed along the well. It should be realized that for the lengths, production rates, and configurations of horizontal wells drilled in the 1980's, these concepts were usually justifiable. The increased lengths of horizontal wells, high production rates, sectional and multilateral completions, and the vast variety of other new applications toward the end of the 1980's made us question the validity of the horizontal-well models and the well-test concepts adopted from vertical wells. The interest in improved horizontal-well models also flourished on the grounds of high productivities of horizontal wells. It was realized that, in many cases, a few percent of the production rate of a reasonably long horizontal well could amount to the cumulative production rate of a few vertical wells. In addition, the productivity-reducing effects were additive; that is, a slight reduction in the productivity here and there could add up to a sizeable loss of the well's production capacity. Furthermore, the low oil prices also created an economic environment where the marginal gains and losses in the productivity may decisively affect the economics of many projects. In the beginning of the 1990's, a new wave of developing horizontal-well solutions under more realistic conditions gained impetus.15–25 As a result, some contemporary models are available today for those who want to challenge the limitations of the conventional horizontal-well models. Unfortunately, the rigor is accomplished at the expense of complexity. Furthermore, even when a rigorous model is available, well-established analysis procedures are usually yet to be developed. This paper presents a critique of the conventional and contemporary horizontal well-test-analysis procedures. The main objective of this assessment is to answer the two fundamental questions horizontal-well-test analysts are currently facing:When is the use of contemporary analysis methods essential? andIf the conventional analysis methods are used, what are the margins of error? Background: The Conventional Methods The standard models of horizontal-well-test analysis have been developed mostly during the 1980's.1-4,8,9 Despite the differences in the development of these models, the basic assumptions and the final solutions are similar. Fig. 1 is a sketch of the horizontal well-reservoir system considered in the pressure-transient-response models. A horizontal well of length Lh is assumed to be located in an infinite slab reservoir of thickness h. The elevation of the horizontal well from the bottom boundary of the formation (well eccentricity) is denoted by zw. The top and bottom reservoir boundaries are usually assumed to be impermeable, although some models consider constant-pressure boundaries.14,15 Before discussing the characteristic features of the conventional horizontal-well transient-pressure-response models, we must first define the dimensionless variables to be used in our discussion. We define the dimensionless pressure, time, and distance in the conventional manner except that we use the horizontal-well half-length, Lh/2, as the reference length in the system. These variables are defined, respectively, by the following expressions.Equation 1Equation 2Equation 3Equation 4 In Eqs. 1 through 3, k=the harmonic average of the principal permeabilities that are assumed to be in the directions of the coordinate axes (). We also define the dimensionless horizontal-well length, wellbore radius, and well eccentricity (distance from the bottom boundary of the formation) as follows.Equation 5Equation 6Equation 7 In Eq. 6, rw, eq=the equivalent radius of the horizontal well in an anisotropic reservoir.26


Sign in / Sign up

Export Citation Format

Share Document