Similar Constructive Method for Solving the Model of the Seepage in Multilayered Reservoir

2013 ◽  
Vol 739 ◽  
pp. 298-302
Author(s):  
Wei Li ◽  
Rong Jun Huang ◽  
Shun Chu Li ◽  
Dong Dong Gui

A well test model analysis that based on the three outer boundary conditions (infinite boundary, closed boundary, constant value out boundary) is established for multilayered reservoir; The solutions to the distribution of reservoir pressure and the bottom-hole pressure are obtained in the Laplace space by the use of the Laplace transform; Though the analysis of solution expressions, the solutions to the reservoir model under the condition of three outer boundaries are found to have the same expression and a new method is obtained to solve the boundary value problem of such models of reservoirsimilar constructive method. The similar structural equation of the solution to the reservoir model ,which is obtained by the similar constructive method, is not only convenient for well test engineer to program the corresponding software for well test analysis but also has an important meaning to the theoretical analysis of the seepage regularity of reservoir.

2014 ◽  
Vol 670-671 ◽  
pp. 678-682
Author(s):  
Feng Jiu Zhang ◽  
Xi Tao Bao ◽  
Shun Chu Li ◽  
Dong Dong Gui ◽  
Xiao Xu Dong

This paper presents a percolation model for the composite reservoir, in which quadratic-gradient effect, well-bore storage, effective radius and three types of outer boundary conditions: constant pressure boundary, closed boundary and infinity boundary are considered. With Laplace transformation, the percolation model was linearized by the substitution of variables and obtained a boundary value problem of the composite modified zero-order Bessel equation. Using the Similar Constructive Method this method, we can gain the distributions of dimensionless reservoir pressure for the composite reservoirs in Laplace space. The similar structures of the solutions are convenient for analyzing the influence of reservoir parameters on pressure and providing significant convenience to the programming of well-test analysis software.


2021 ◽  
pp. 1-11
Author(s):  
Xuliang Liu ◽  
Wenshu Zha ◽  
Zhankui Qi ◽  
Daolun Li ◽  
Yan Xing ◽  
...  

Abstract Well test analysis is a crucial technique to monitor reservoir performance, which is based on the theory of seepage mechanics, through the study of well test data, to identify reservoir models and estimate reservoir parameters. Reservoir model recognition is the first and essential step of well test analysis. It is usually judged by professionals' experience, which results in low efficiency and accuracy. This paper is devoted to applying convolutional neural network (CNN) to well test analysis and proposes a new intelligent reservoir model identification method. Eight reservoir models studied in this paper include homogenous reservoirs with different outer boundaries such as infinite acting boundary, circular, single, angular, channel, U-shaped and rectangular sealing fault boundaries and a radial composite reservoir with infinite acting boundary. Well testing data used in this paper, including actual field data and theoretical data generated by analytical solutions. To improve the classification accuracy of actual field data, noise processing was carried out on the data before training. The CNN that is most suitable for model recognition has been obtained through trial-and-error procedures. The availability of proposed CNN is proved with actual field cases of Daqing oil field, China. The method realizes the automatic identification of reservoir model with the total classification accuracy (TCA) of test data set of 98.68% and 95.18% for original data and noisy data respectively.


1972 ◽  
Author(s):  
Anil Kumar ◽  
H. J. Ramey

Abstract Very little information exists for analyzing well tests wherein a part of the drainage boundary is under pressure support from water influx or fluid injection. An idealization is the behavior of a well in the center of a square whose outer boundary remains at constant pressure. A study of this system indicated important differences from the behavior of a well in a closed outer boundary square, the conventional system. At infinite shut in, the constant- pressure boundary case well will reach the initial pressure of the system, rather than a mean pressure resulting from depletion. But it is possible to compute the mean pressure in the constant-pressure case at any time during shut in. Interpretative graphs for analyzing drawdown and buildup pressures are presented and discussed. This case is also of interest in analysis of well tests obtained from developed five-spot fluid injection patterns. Introduction Well-test analysis has become a widely used tool for reservoir engineers in the last twenty years. The initial theory was reported by Horner1 for unsteady flow of single phase fluids of small but constant compressibility to a well producing at a constant rate in -infinite and closed boundary reservoirs. Extension of the theory to the finite reservoir case involves specification of the outer boundary condition. The two most commonly observed conditions are: (1) no flow at the outer boundary corresponding to a closed or depletion reservoir, and (2) constant pressure at the outer boundary corresponding to complete water-drive.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Xiao-Ping Li ◽  
Ning-Ping Yan ◽  
Xiao-Hua Tan

This paper presents a study of characteristic value method of well test analysis for horizontal gas well. Owing to the complicated seepage flow mechanism in horizontal gas well and the difficulty in the analysis of transient pressure test data, this paper establishes the mathematical models of well test analysis for horizontal gas well with different inner and outer boundary conditions. On the basis of obtaining the solutions of the mathematical models, several type curves are plotted with Stehfest inversion algorithm. For gas reservoir with closed outer boundary in vertical direction and infinite outer boundary in horizontal direction, while considering the effect of wellbore storage and skin effect, the pseudopressure behavior of the horizontal gas well can manifest four characteristic periods: pure wellbore storage period, early vertical radial flow period, early linear flow period, and late horizontal pseudoradial flow period. For gas reservoir with closed outer boundary both in vertical and horizontal directions, the pseudopressure behavior of the horizontal gas well adds the pseudosteady state flow period which appears after the boundary response. For gas reservoir with closed outer boundary in vertical direction and constant pressure outer boundary in horizontal direction, the pseudopressure behavior of the horizontal gas well adds the steady state flow period which appears after the boundary response. According to the characteristic lines which are manifested by pseudopressure derivative curve of each flow period, formulas are developed to obtain horizontal permeability, vertical permeability, skin factor, reservoir pressure, and pore volume of the gas reservoir, and thus the characteristic value method of well test analysis for horizontal gas well is established. Finally, the example study verifies that the new method is reliable. Characteristic value method of well test analysis for horizontal gas well makes the well test analysis process more simple and the results more accurate.


2013 ◽  
Vol 631-632 ◽  
pp. 265-271 ◽  
Author(s):  
Xi Tao Bao ◽  
Shun Chu Li ◽  
Dong Dong Gui

This paper presents a spherical percolation model for dual-porosity media reservoir, where the quadratic-gradient term, wellbore storage and three types of outer boundary conditions: constant pressure boundary, closed boundary and infinity boundary were considered. Then a new method: Similar Constructive Method was put forward for solving this type of percolation model. And solutions of the dimensionless reservoir pressure and the dimensionless bottomhole pressure in Laplace space were obtained. It was proved that these solutions had a similar structure. The Similar Constructive Method is an elementary and algebraic method, simple and practical. And the similar structure of solutions can simplify the well test analysis software programming and analyze the reservoir parameter’s affection on pressure conveniently. The present research has a great academic significance and application value in oil-gas field development.


1974 ◽  
Vol 14 (02) ◽  
pp. 107-116 ◽  
Author(s):  
Anil Kumar ◽  
Henry J. Ramey

Abstract Very little information exists for analyzing well tests wherein a part of the drainage boundary is under pressure support from water influx or fluid injection. An idealization is the behavior of a well in the center of a square whose outer boundary remains at constant pressure. A study of this system indicated important differences from the behavior of a well in a square with a closed outer boundary, the conventional system. At infinite shut-in, the well with a constant-pressure boundary will reach the initial pressure of the system, rather than a mean pressure resulting from depletion. It is possible to compute the mean pressure in the constant-pressure case at any time during shut-in. Interpretative graphs for analyzing drawdown and buildup pressures are presented and discussed. This case is also of interest in analyzing well tests obtained from developed five-spot fluid-injection patterns. Introduction Moore at. first demonstrated the application of transient flow theory to individual well behavior in 1931. Classic studies by Muskat, Elkins, and Arps in the 1930's and 1940's set the stage for two important papers in 1950 that clearly elucidated the basics of modern well-test analysis. One paper by Horner 5 summarized methods for analyzing transient pressure data from wells in infinite reservoirs (new wells in large reservoirs), and a well in a closed, circular reservoir under depletion (fully developed fields). The second paper by Miller, Dyes, and Hutchinsons considered two cases for wells assumed to have produced a long time before shut-in for pressure buildup. One case assumed a closed circular drainage boundary, and the other case assumed a circular drainage boundary at constant pressure. The former would represent annual well tests for fully developed fields, and the latter would represent wells under full water drive in single-well reservoirs. Since 1950, several hundred papers and a monograph have developed the behavior of a constant-rate well in a closed drainage shape of almost any geometry. Key in this development was a classic study by Matthews, Brons, and Hazebroek. The constant-pressure outer-boundary drainage region problem introduced by Miller-Dyes-Hutchinson was reviewed by Perrine in 1955, discussed by Hazekoek el al. in 1958 in connection with five-spot injection patterns, and mentioned briefly by Dietz in 1965. The only other studies dealing with water-drive conditions (constant-pressure outer boundaries) appear in Ref. 7 (Page 44) and in papers by Earlougher et al., published in 1968. It is clear that this case was eitherconsidered totally unimportant, orstudiously avoided. Almost all effort was expended on studying closed outer boundary (depletion) systems.Another problem concerned the conventional assumptions involved in developing well-test analysis method. Even for the common closed (depletion) systems, field applications raised the question of the importance of assumptions. Homer method of graphing assumed the well had been produced a short time, whereas the Miller-Dyes-Hutchinson method assumed that production was long enough to reach pseudosteady state -a long time in many cases. Engineers involved in applications were further confused by differences in methods, as well as by the importance of the assumptions required for analytical solutions that established welltest methods. Recently, Ramey and Cobb showed that an empirical approach could be used to avoid assumptions (which were sufficient but unnecessary) inherent in many previous analytical studies. It was decided to apply this method to the limiting case of a well in a full-water-drive, single-well reservoir - a well in a constant-pressure square. This case is a rarity not often seen in practice. It is closely approached by either an injector or a producer in a developed fluid-injection pattern, by a single injector in an aquifer gas-injection storage test, or by some single-well reservoirs in extensive aquifers.The main point is that a well in a constant-pressure square sets a limiting condition similar to a full water drive. The more common case of a well in a partial-water-drive reservoir should lie between this behavior and that of a closed square. SPEJ P. 107^


Sign in / Sign up

Export Citation Format

Share Document