Design of Virtual Prototype for Cold Roll Forming Machine of Side Panel of Engineering Vehicles and Numerical Simulation of the Forming Process

2013 ◽  
Vol 753-755 ◽  
pp. 159-162
Author(s):  
Qiu Bo Huang ◽  
Jun Rui Song ◽  
Qing Bo Yang

In this paper, based on the engineering vehicle’s side plate cold roll forming machine developed by a company, we use 3D solid modeling software Solid Works to complete the establishment of a 3D model. On the basis of explicit dynamics elastoplastic finite element method basic theory, we make numerical simulation analysis of the metal plate’s forming process by using ANSYS/LS-DYNA module. According to the simulation results, we make repeated adjustment and optimization on its pass system and parameters. Through the numerical simulation of the forming process, we conclude the stress-strain distribution of the sheet metal. For similar products, the result has a certain reference value to the research of cold roll forming process and the design of cold roll forming equipments.

2014 ◽  
Vol 2014.22 (0) ◽  
pp. 163-164
Author(s):  
Shintaro AKANUMA ◽  
Tomoya SUZUKI ◽  
Hayato ASO ◽  
Bunkyo KYO ◽  
Shinichi NISHIDA ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1902
Author(s):  
Zhijuan Meng ◽  
Yanan Fang ◽  
Lidong Ma

In order to implement rapid prediction of edge defects in the cold roll forming process, a new analytical method based on the mean longitudinal strain of the racks is presented. A cubic spline curve with the parameters of the cumulative chord length is applied to fit the corresponding points and center points of different passes, and fitting curves are obtained. As the cold roll forming is micro-tension forming, the tensions between racks are ignored. Then the mean longitudinal strains between racks are obtained. By comparing the mean longitudinal strain between racks and the yield strain of the material, we can judge whether there are defects at the edges. Finally, the reasonableness of this method is illustrated and validated by an example. With this method, the roll forming effect can be quickly predicted, and the position where a greater longitudinal strain occurred can be determined. In order to prevent the defects, the deformation angles need to be modified when the result is beyond the yield strain. To further prove the correctness of the theory, the results of the analytical method are compared with the ones of the non-linear finite element software ABAQUS. The analytical results have the same trend as the finite element results. This method can provide useful guidance to the actual design process.


2015 ◽  
Vol 651-653 ◽  
pp. 219-224 ◽  
Author(s):  
Antonio Formisano ◽  
F. Capece Minutolo ◽  
Antonio Caraviello ◽  
Luigi Carrino ◽  
Massimo Durante ◽  
...  

Cold roll forming is a process for plastic deformation, which allows realizing profiles, with a defined section and established length, from the plastic deformation of a metal sheet. The sheet is induced to cross several stands of rolls, arranged along the same axis of advancing. The rolls induce plastic deformation in the sheet and then lead it to the desired geometric configuration. In order to control the geometric parameters of the plate during the profiling, it was created a FEM model to simulate the final stage of the technological process, developed by an industrial production line of a company located in Naples (Italy), that sells tubes with several cross sections. In this phase, the semi-finished product, having a circular cross section, is forced to cross through four stands of rolls. In this way, it changes the geometric condition of the cross section from circular to square. The model was carried out using a non-linear calculation code, which allows analyzing the parameters of interest in the different process steps. The results, obtained numerically, were compared with the experimental ones through the measurement of five specimens, obtained directly from technological process. The values of percentage deviation, regarding the external dimension and the thickness, for each step of advancement, do not exceed the 3% of error. Then, the analysis results denote the capability to simulate the cold roll forming process using finite element method.


Sign in / Sign up

Export Citation Format

Share Document