Interference Modeling and Analysis for Inclined Projective Multiple Beams of GEO Satellite Communication Systems

2013 ◽  
Vol 756-759 ◽  
pp. 1204-1209 ◽  
Author(s):  
Wei Zheng ◽  
Bin Li ◽  
Shu Bo Ren ◽  
Jiang Chen ◽  
Jian Jun Wu

In multi-beam satellite systems, Inter-Beam Interference (IBI) has a great effect on system performance. Within range of satellite coverage area, inclined projective multiple beams give rise to elliptic beam projections, resulting in that the distribution of beam projections is different from traditional cellular distribution. In this paper, an Inclined Projection (IP) model is proposed for IBI in OFDMA based GEO satellite communication systems, and corresponding analysis is also included. A comparison of carrier to interference power ratio (C/I) of users at the center of each cell with and without the consideration of IP is made, based on the simulation using different Frequency Reuse (FR) factor. The corresponding conclusions are presented. This research can provide reference for later satellite beam planning.

Author(s):  
Teodor Narytnik ◽  
Vladimir Saiko

The technical aspects of the main promising projects in the segments of medium and low-orbit satellite communication systems are considered, as well as the project of the domestic low-orbit information and telecommunications system using the terahertz range, which is based on the use of satellite platforms of the micro- and nanosatellite class and the distribution of functional blocks of complex satellite payloads more high-end on multiple functionally related satellites. The proposed system of low-orbit satellite communications represents the groupings of low-orbit spacecraft (LEO-system) with the architecture of a "distributed satellite", which include the groupings of the root (leading) satellites and satellite repeaters (slaves). Root satellites are interconnected in a ring network by high-speed links between the satellites. The geometric size of the “distributed satellite” is the area around the root satellite with a radius of about 1 km. The combination of beams, which are formed by the repeater satellites, make up the service area of the LEO system. The requirements for the integrated service area of the LEO system (geographical service area) determine the requirements for the number of distributed satellites in the system as a whole. In the proposed system to reduce mutual interference between the grouping of the root (leading) satellites and repeater satellites (slaves) and, accordingly, minimizing distortions of the information signal when implementing inter-satellite communication, this line (radio channel) was created in an unlicensed frequency (e.g., in the terahertz 140 GHz) range. In addition, it additionally allows you to minimize the size of the antennas of such a broadband channel and simplify the operation of these satellite systems.


Author(s):  
Н.В. ВАРЛАМОВ ◽  
С.С. УВАРОВ

Выполнен анализ интенсивности использования геостационарной орбиты (ГСО) и негеостационарных орбит (НГСО) современными системами спутниковой связи фиксированной спутниковой службы в Ки-, Ка- и Q/V-диапазонах частот. Исследование охватывает ГСО, а также два наиболее используемых сегмента НГСО с высотой апогея до 1500 км и выше 8000 км. Представлены также результаты исследований для высокоэллиптических орбит (ВЭО). Сделан вывод о дефиците орбитально-частотного ресурса на ГСО и НГСО для рассматриваемых диапазонов частот. The paper analyzes the intensity of the use of geostationary orbit (GSO) and non-geostationary orbits (non-GSO) by modern satellite communication systems of the fixed-satellite service in the Ku-, Ka- and Q/V-bands. The analysis is made for geostationary orbit and two most used segments of non-GSO orbits with apogee altitudes up to 1500 km and above 8000 km. Results for highly inclined elliptical orbits (HEO) are also presented. The analysis results show a shortage of orbital and frequency resources in GSOs and non-GSOs for the considered frequency bands.


Aviation ◽  
2018 ◽  
Vol 22 (1) ◽  
pp. 24-30
Author(s):  
Dimov Stojce Ilcev

In this paper is introduced the first proposal for development of Global Aeronautical Distress and Safety System (GADSS) in 1999 by the author of this article. The GADSS is de facto the integration of space (radio and satellite) Communication, Navigation and Surveillance (CNS) with Tracking, Detecting and Search and Rescue (SAR) systems, which have to provide airmen with global communications and locating networks. The GPS, GLONASS and other Global Navigation Satellite Systems (GNSS) provide precise positioning data for vessels, land vehicles and aircraft, but modern CNS demands need for enhanced services and augmentation of GNSS networks. Both networks have to be integrated under an GADSS umbrella with elements capable of being operated by any individual onboard aircraft to ensure prompt distress alert for SAR procedure. The enhanced concept of GADSS is that SAR authorities ashore and ships in the immediate vicinity of the aircraft in distress have to be rapidly alerted via radio and satellite communication systems and to assist in a coordinated SAR operations with the minimum of delay. In 2016, 16 years in delay, the International Civil Aviation Organization (ICAO) has begun its process to amend international standards and recommended practices to align with GADSS concept. This paper will also introduce the necessary networks and equipment, which has to ensure harmonized and enhanced maritime and aeronautical global SAR systems.


2013 ◽  
Vol 846-847 ◽  
pp. 651-654
Author(s):  
Ya Dan Zheng ◽  
Jian Bo Li ◽  
Yong Luo ◽  
Ming Ke Dong ◽  
Jian Jun Wu

In this paper, a hybrid HARQ scheme was proposed by combing forced retransmission and traditional HARQ together, after analyzing the characteristics of satellite channel and the problem encountered when utilizing HARQ scheme in GEO satellite communication system. The forced retransmission can make a packet be correctly decoded more quickly and shorten the waiting delay. Meanwhile, to balance the delay and throughput, the proper parameters were given for the proposed hybrid scheme. Simulation results show that the proposed scheme performs well at decreasing the waiting delay, especially when SNR is low. The conclusion can be drawn that the proposed scheme can improve the HARQ performance in GEO satellite communication systems.


2016 ◽  
Author(s):  
◽  
Sihle S. Sibiya

This doctoral research introduces an integration of satellite systems and new stratospheric platforms for weather observation, imaging and transfer of meteorological data to the ground infrastructures. Terrestrial configuration and satellite communication subsystems represent well-established technologies that have been involved in global satellite sensing and weather observation area for years. However, in recent times, a new alternative has emerged based on quasi-stationary aerial platforms located in the Stratosphere called High Altitude Platform (HAP) or Stratospheric Communication Platforms (SCP). The SCP systems seem to represent a dream come true for communication engineers since they preserve most of the advantages of both terrestrial and satellite communication systems. Today, SCP systems are able to help, in a more cost effective way, developments of space Earth sensing and weather observation and weather sensing and observation. This new system can provide a number of forms ranging from a low altitude tethered balloon to a high altitude (18 – 25 km) fuel-powered piloted aircraft, solar-powered unmanned airplanes and solar-powered airship.


2019 ◽  
Author(s):  
◽  
Elijah Olusayo Olurotimi

The traffic flow of information across the globe is crucial in today’s communication systems, where about 88% population are connected via several smart devices, hence resulting into constraints on the limited available radio resources. Due to the limitations of terrestrial connectivity affecting communication systems, in terms of geographical coverage area and system capacity, which have become serious issues globally. Therefore, there is a need for communication industries to embrace the use of satellite systems. Satellite services have many advantages some of which includes availability, wide coverage area and the ability to accommodate most of the limitations of the terrestrial systems. However, Earth-to-satellite systems, especially those operating at higher frequencies above 7 GHz, usually suffer from degradation due to hydrometeors which are mainly produced in the troposphere. Hydrometeors include rainfall, hail, gases, clouds and snow among others; of which rainfall is the principal factor which contributes highest impairment along the propagation paths, simply termed as rain attenuation. Moreover, the scenario in the tropical and subtropical regions become more pronounced due to the degree of occurrence of precipitation when compared to the temperate region. Other significant factor that usually affects the propagation of signals is attenuation by scattering and absorption due to rain, water vapour, cloudiness and other gases in the atmosphere. Thus, in order to estimate accurate rain attenuation of a location, there is a need for accurate measurements of rain attenuation components such as rain height, rain rate, altitude, slant-path length, among others; of which rain height plays a significant role in the case of satellite links. However, the attenuation due to other tropospheric components cannot be negligible at higher frequencies over any location in order to proffer solution or cater for impairments that may arise as a result of any atmospheric perturbation in a satellite communications system. The significance of rain height in estimating rain attenuation along the satellite path, is ii crucial and this important component has been extensively dealt with in the temperate region, partially in tropical region with no record in subtropical regions. This study, therefore, focuses on the measurement of rain height to assess the degree of attenuation due to precipitation over several locations across South Africa, a subtropical region. In spite of the extensive works that have been carried out on prediction of rain attenuation based on the recommended rain height by the International Telecommunication Union-Regulation over some of the studied locations, the contribution of local rain height data for rain attenuation prediction will enable better results which are the focus of this study. Hence, this thesis presents 5-year rain height measurements based on zero-degree isotherm height (ZDIH) obtained from the Tropical Rainfall Measuring Mission-Precipitation Radar (TRMM-PR) over a subtropical region-South Africa. The component of this work encompasses rain height cumulative distribution, percentage of exceedances, development of the contour maps of rain heights for South Africa, modeling of rain height, tropospheric attenuation prediction due to gas, cloudiness, scintillation, application of rain height for rain attenuation prediction, estimation of total attenuation and prediction of quality of service based on signal to noise ratio. Findings from this work show that the ZDIH distribution is location dependent. Rain heights value ranges from about 4.305 km from the southern region to 5.105 km in the northern region of South Africa. The parameters of the ZDIH distribution models developed with the use of maximum likelihood estimation technique show a wider variation over some selected locations observed. Finally, attenuation due to rain, gas, cloudiness and scintillation were estimated. In addition, the total attenuation and the quality of service based on the propagation signals at SHF and EHF over some selected stations were evaluated and presented in this work.


Sign in / Sign up

Export Citation Format

Share Document