Electronic Structures in LaTiO3/LaAlO3 Multilayers

2013 ◽  
Vol 771 ◽  
pp. 7-11 ◽  
Author(s):  
Er Jun Kan

We demonstrate the existence of a hidden degree of freedom controlling the orbitalordering in [LaTiO1/[LaAlO5 multilayers with comprehensive density-functional theorycalculations. The orbitals of two-dimensional (2D) 3d1state of Ti atoms in the multilayers alwayscontain large dxy components, which is unexpected from crystal field theory (first Jahn-Tellerdistortion). The competition between first and second Jahn-Teller distortion induces variousmagnetic properties. Thus, transition-metal oxides/non-transition-metal oxides multilayers mayprovide an important direction to manipulate the spin and orbital ordering in magnetic materials.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
A. S. McLeod ◽  
A. Wieteska ◽  
G. Chiriaco ◽  
B. Foutty ◽  
Y. Wang ◽  
...  

AbstractThe 4d transition metal perovskites Can+1RunO3n+1 have attracted interest for their strongly interacting electronic phases showing pronounced sensitivity to controllable stimuli like strain, temperature, and even electrical current. Through multi-messenger low-temperature nano-imaging, we reveal a spontaneous striped texture of coexisting insulating and metallic domains in single crystals of the bilayer ruthenate Ca3(TixRu1-x)2O7 across its first-order Mott transition at $$T \approx 95$$ T ≈ 95 K. We image on-demand anisotropic nucleation and growth of these domains under in situ applied uniaxial strain rationalized through control of a spontaneous Jahn-Teller distortion. Our scanning nano-susceptibility imaging resolves the detailed susceptibility of coexisting phases to strain and temperature at the transition threshold. Comparing these nano-imaging results to bulk-sensitive elastoresistance measurements, we uncover an emergent “domain susceptibility” sensitive to both the volumetric phase fractions and elasticity of the self-organized domain lattice. Our combined susceptibility probes afford nano-scale insights into strain-mediated control over the insulator-metal transition in 4d transition metal oxides.


2008 ◽  
Vol 72 (8) ◽  
pp. 1159-1161 ◽  
Author(s):  
Kh. G. Bogdanova ◽  
A. R. Bulatov ◽  
V. A. Golenishchev-Kutuzov ◽  
R. I. Kalimullin ◽  
A. A. Potapov

Sign in / Sign up

Export Citation Format

Share Document