nano imaging
Recently Published Documents


TOTAL DOCUMENTS

225
(FIVE YEARS 68)

H-INDEX

28
(FIVE YEARS 5)

Small ◽  
2021 ◽  
pp. 2105687
Author(s):  
Aolin Deng ◽  
Cheng Hu ◽  
Peiyue Shen ◽  
Jiajun Chen ◽  
Xingdong Luo ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eva Arianna Aurelia Pogna ◽  
Leonardo Viti ◽  
Antonio Politano ◽  
Massimo Brambilla ◽  
Gaetano Scamarcio ◽  
...  

AbstractNear-field microscopy discloses a peculiar potential to explore novel quantum state of matter at the nanoscale, providing an intriguing playground to investigate, locally, carrier dynamics or propagation of photoexcited modes as plasmons, phonons, plasmon-polaritons or phonon-polaritons. Here, we exploit a combination of hyperspectral time domain spectroscopy nano-imaging and detectorless scattering near-field optical microscopy, at multiple terahertz frequencies, to explore the rich physics of layered topological insulators as Bi2Se3 and Bi2Te2.2Se0.8, hyperbolic materials with topologically protected surface states. By mapping the near-field scattering signal from a set of thin flakes of Bi2Se3 and Bi2Te2.2Se0.8 of various thicknesses, we shed light on the nature of the collective modes dominating their optical response in the 2-3 THz range. We capture snapshots of the activation of transverse and longitudinal optical phonons and reveal the propagation of sub-diffractional hyperbolic phonon-polariton modes influenced by the Dirac plasmons arising from the topological surface states and of bulk plasmons, prospecting new research directions in plasmonics, tailored nanophotonics, spintronics and quantum technologies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Korbinian J. Kaltenecker ◽  
Thorsten Gölz ◽  
Enrico Bau ◽  
Fritz Keilmann

AbstractInfrared fingerprint spectra can reveal the chemical nature of materials down to 20-nm detail, far below the diffraction limit, when probed by scattering-type scanning near-field optical microscopy (s-SNOM). But this was impossible with living cells or aqueous processes as in corrosion, due to water-related absorption and tip contamination. Here, we demonstrate infrared s-SNOM of water-suspended objects by probing them through a 10-nm thick SiN membrane. This separator stretches freely over up to 250 µm, providing an upper, stable surface to the scanning tip, while its lower surface is in contact with the liquid and localises adhering objects. We present its proof-of-principle applicability in biology by observing simply drop-casted, living E. coli in nutrient medium, as well as living A549 cancer cells, as they divide, move and develop rich sub-cellular morphology and adhesion patterns, at 150 nm resolution. Their infrared spectra reveal the local abundances of water, proteins, and lipids within a depth of ca. 100 nm below the SiN membrane, as we verify by analysing well-defined, suspended polymer spheres and through model calculations. SiN-membrane based s-SNOM thus establishes a novel tool of live cell nano-imaging that returns structure, dynamics and chemical composition. This method should benefit the nanoscale analysis of any aqueous system, from physics to medicine.


2021 ◽  
Author(s):  
Matthias M. Wiecha ◽  
Amin Soltani ◽  
Hartmut G. Roskos

Spectroscopy and imaging with terahertz radiation propagating in free space suffer from the poor spatial resolution which is a consequence of the comparatively large wavelength of the radiation (300 μm at 1 THz in vacuum) in combination with the Abbe diffraction limit of focusing. A way to overcome this limitation is the application of near-field techniques. In this chapter, we focus on one of them, scattering-type Scanning Near-field Optical Microscopy (s-SNOM) which − due to its versatility − has come to prominence in recent years. This technique enables a spatial resolution on the sub-100-nm length scale independent of the wavelength. We provide an overview of the state-of-the-art of this imaging and spectroscopy modality, and describe a few selected application examples in more detail.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Altair T. Contreras Jaimes ◽  
Gloria Kirste ◽  
Araceli de Pablos-Martín ◽  
Susanne Selle ◽  
Juliana Martins de Souza e Silva ◽  
...  

AbstractBioactive glasses convert to a biomimetic apatite when in contact with physiological solutions; however, the number and type of phases precipitating depends on glass composition and reactivity. This process is typically followed by X-ray diffraction and infrared spectroscopy. Here, we visualise surface mineralisation in a series of sodium-free bioactive glasses, using transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (EDXS) and X-ray nano-computed tomography (nano-CT). In the glasses, the phosphate content was increased while adding stoichiometric amounts of calcium to maintain phosphate in an orthophosphate environment in the glass. Calcium fluoride was added to keep the melting temperature low. TEM brought to light the presence of phosphate clustering and nearly crystalline calcium fluoride environments in the glasses. A combination of analytical methods, including solid-state NMR, shows how with increasing phosphate content in the glass, precipitation of calcium fluoride during immersion is superseded by fluorapatite precipitation. Nano-CT gives insight into bioactive glass particle morphology after immersion, while TEM illustrates how compositional changes in the glass affect microstructure at a sub-micron to nanometre-level.


Nano Letters ◽  
2021 ◽  
Author(s):  
Sven A. Dönges ◽  
R. Peyton Cline ◽  
Steven E. Zeltmann ◽  
Jun Nishida ◽  
Bernd Metzger ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4092
Author(s):  
Gintaras Valušis ◽  
Alvydas Lisauskas ◽  
Hui Yuan ◽  
Wojciech Knap ◽  
Hartmut G. Roskos

In this roadmap article, we have focused on the most recent advances in terahertz (THz) imaging with particular attention paid to the optimization and miniaturization of the THz imaging systems. Such systems entail enhanced functionality, reduced power consumption, and increased convenience, thus being geared toward the implementation of THz imaging systems in real operational conditions. The article will touch upon the advanced solid-state-based THz imaging systems, including room temperature THz sensors and arrays, as well as their on-chip integration with diffractive THz optical components. We will cover the current-state of compact room temperature THz emission sources, both optolectronic and electrically driven; particular emphasis is attributed to the beam-forming role in THz imaging, THz holography and spatial filtering, THz nano-imaging, and computational imaging. A number of advanced THz techniques, such as light-field THz imaging, homodyne spectroscopy, and phase sensitive spectrometry, THz modulated continuous wave imaging, room temperature THz frequency combs, and passive THz imaging, as well as the use of artificial intelligence in THz data processing and optics development, will be reviewed. This roadmap presents a structured snapshot of current advances in THz imaging as of 2021 and provides an opinion on contemporary scientific and technological challenges in this field, as well as extrapolations of possible further evolution in THz imaging.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dong Yun Lee ◽  
Chulho Park ◽  
Jinseong Choi ◽  
Yeonjeong Koo ◽  
Mingu Kang ◽  
...  

AbstractTip-enhanced nano-spectroscopy, such as tip-enhanced photoluminescence (TEPL) and tip-enhanced Raman spectroscopy (TERS), generally suffers from inconsistent signal enhancement and difficulty in polarization-resolved measurement. To address this problem, we present adaptive tip-enhanced nano-spectroscopy optimizing the nano-optical vector-field at the tip apex. Specifically, we demonstrate dynamic wavefront shaping of the excitation field to effectively couple light to the tip and adaptively control for enhanced sensitivity and polarization-controlled TEPL and TERS. Employing a sequence feedback algorithm, we achieve ~4.4 × 104-fold TEPL enhancement of a WSe2 monolayer which is >2× larger than the normal TEPL intensity without wavefront shaping. In addition, with dynamical near-field polarization control in TERS, we demonstrate the investigation of conformational heterogeneity of brilliant cresyl blue molecules and the controllable observation of IR-active modes due to a large gradient field effect. Adaptive tip-enhanced nano-spectroscopy thus provides for a systematic approach towards computational nanoscopy making optical nano-imaging more robust and widely deployable.


Sign in / Sign up

Export Citation Format

Share Document