Cutting Force Analysis in Micro Milling of Steel

2013 ◽  
Vol 774-776 ◽  
pp. 1017-1020 ◽  
Author(s):  
Bing Wu ◽  
Huai Zhong Li

An analysis of cutting force performance in the micro milling on steel has been carried out based on an experimental work using micro flat end mills on a precision CNC machine tool. It has been found that cutting forces occurred at low feed per tooth are relatively high by assessing the averaged peak forces from the experiments. When feed per tooth is relatively close to tool edge radius, the forces were not growing in linearity with the increasing feedrate. This finding indicates the significance of ploughing phenomenon as an effect of tool edge radius in micro milling.

2016 ◽  
Vol 836-837 ◽  
pp. 374-380
Author(s):  
Teng Yi Shang ◽  
Li Jing Xie ◽  
Xiao Lei Chen ◽  
Yu Qin ◽  
Tie Fu

In the meso-scale machining, feed rate, grain size and tool edge radius are in the same order of magnitude, and cutting process is often carried out in the grain interior and grain boundary. In this paper the meso-cutting process of hot-rolled AISI1045 steel is studied and its metallographic microstructure is analyzed for the establishment of multiphase models which incorporate the effect of ferrite and pearlite grains. In order to discover the applicability of multiphase models to the simulation of meso-cutting, three contrast simulation models including multiphase model with rounded-edge cutting insert (model I), multiphase model with sharp edge cutting insert (model II) and equivalent homogeneous material model with rounded-edge cutting insert (model III) are built up for the meso-orthogonal cutting processes of hot-rolled AISI1045. By comparison with the experiments in terms of chip morphology, cutting force and specific cutting force, the most suitable model is identified. Then the stress distiribution is analyzed. And it is found that multiphase model with tool edge radius can give a more accurate prediction of the global variables and reveal more about these important local variables distribution.


2010 ◽  
Author(s):  
Y. C. Liang ◽  
K. Yang ◽  
K. N. Zheng ◽  
Q. S. Bai ◽  
W. Q. Chen ◽  
...  

2012 ◽  
Vol 426 ◽  
pp. 235-238 ◽  
Author(s):  
Da Peng Dong ◽  
Xiao Hu Zheng ◽  
Ming Chen ◽  
Qing Long An

In recent years, with the development of machinery industry, micro-cutting technologies have been gradually moving into engineering realization. The paper carries out a series of works on simulation modeling of micro-cutting of Ti-5Al-5V-5Mo-3Cr considering tool edge radius. Unlike conventional cutting, in micro-cutting the effect of tool edge radius which has a marked impact on cutting force, specific cutting energy, burr formation and burr size can no longer be neglected.


1974 ◽  
Vol 96 (4) ◽  
pp. 1258-1267 ◽  
Author(s):  
M. Es. Abdelmoneim ◽  
R. F. Scrutton

The results of cutting force measurements when machining materials which do not form a sizable unstable built-up-edge are compared with the results of a theoretical analysis. This analysis, based partly on the use of circular cylindrical surfaces of velocity discontinuity around the base of the tool, yields specific energy values which are uniquely determined by the value of the undeformed chip thickness in relation to the tool edge radius.


2015 ◽  
Vol 799-800 ◽  
pp. 256-260 ◽  
Author(s):  
Ravi Shankar Anand ◽  
Karali Patra

This article introduces a methodology for extracting specific cutting force coefficients by performing micro drilling experiments with tool edge radius effect.Tool edge radius mainly affects the effective rake angle that varies according to undeformed chip thickness. Ploughing effect is also considered for undeformed chip thickness lower than the minimum chip thickness. In this work specific normal and frictional cutting coefficients for both ploughing and shearing are determined from mechanistic approach of fitting experimental specific thrust forces of the micro drilling process. The variations of these cutting coefficients with respect to cutting speedand feed are presented. Finally these coefficients have been applied to the mechanistic model to predict thrust force in micro drilling. The predicted thrust force values at different feed show good agreement with the experimental results.


2011 ◽  
Vol 223 ◽  
pp. 859-868 ◽  
Author(s):  
Shukri Afazov ◽  
Svetan Ratchev ◽  
Joel Segal

This paper investigates the effects of the cutting tool edge radius on the cutting forces and stability lobes in micro-milling. The investigation is conducted based on recently developed models for prediction of micro-milling cutting forces and stability lobes. The developed models consider the nonlinearities of the micro-milling process, such as nonlinear cutting forces due to cutting velocity dependencies, edge radius effect and run-out presence. A number of finite element analyses (FEA) are performed to obtain the cutting forces in orthogonal cutting which are used for determining the micro-milling cutting forces. The chip morphology obtained for different tool edge radii using FEA is presented. It is observed that at large tool edge radii the influence of the ploughing effect become more significant factor on the chip morphology. The results related to micro-milling cutting forces and stability lobes show that by enlarging the tool edge radius the micro-milling cutting forces increase while the stability limits decrease.


2017 ◽  
Vol 739 ◽  
pp. 12-17
Author(s):  
Yunn Lin Hwang ◽  
Thi Na Ta ◽  
Jung Kuang Cheng

In this paper, the influence of friction on static, dynamic characteristics, the strength and lifetime of a 3-axes flexible CNC machine tool are taken into account. The machine tool is first modelled by using finite element method (FEM) to perform static structural analysis. After that, the dynamic effects caused by the inertia forces and the displacement of moving part of the machine on contact stress are considered in this study. Then, the stress and contact force distributions on solid-flexible contact are also obtained. Finally, the influence of dynamic structure, cutting conditions and material properties on strength and lifetime of CNC machine tool are discussed by using fatigue analysis. Consequently, the proposed method can be used for efficient simulation of structural dynamics, lifetime assessment as well as interactions of the real CNC machine with the machine tool structure in a virtual environment.


2020 ◽  
Vol 108 (7-8) ◽  
pp. 2121-2130
Author(s):  
Xiaoguang Guo ◽  
Yang Li ◽  
Linquan Cai ◽  
Jiang Guo ◽  
Renke Kang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document