Characterization of Tomato Fruit LeRIN Gene Application Virus-Induced Gene Silencing Technology

2013 ◽  
Vol 781-784 ◽  
pp. 1685-1688
Author(s):  
Ling Li ◽  
Guo Xia Zhu ◽  
Zheng Liu ◽  
Tie Ling Liu

Virus-induced gene silencing (VIGS) is a powerful tool for the study of gene function and down regulate specific gene expression in plant. The RIN transcription factor is an important developmental regulator in tomato fruit ripening. In this work, the TRV-LeRIN infiltrated fruit significantly developed green color phenotypes, whereas the control fruit would turn red normally. Dissection of silenced areas for analysis identified whether the LeRIN gene is silenced or not. Taken together, we successfully applied syringe infiltration method of VIGS to silence the LeRIN gene in tomato fruit. These results are critical for understanding the mechanism of tomato fruit ripening.

2000 ◽  
Vol 78 (5) ◽  
pp. 607-618 ◽  
Author(s):  
J.M. Blumer ◽  
R.P. Clay ◽  
C.W. Bergmann ◽  
P. Albersheim ◽  
A. Darvill

2005 ◽  
Vol 123 (3) ◽  
pp. 331-338 ◽  
Author(s):  
Mamiko Kitagawa ◽  
Hirotaka Ito ◽  
Takeo Shiina ◽  
Nobutaka Nakamura ◽  
Takahiro Inakuma ◽  
...  

2017 ◽  
Vol 8 ◽  
Author(s):  
Lu Yang ◽  
Guojian Hu ◽  
Ning Li ◽  
Sidra Habib ◽  
Wei Huang ◽  
...  

Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Aung Htay Naing ◽  
Swum Yi Kyu ◽  
Phyo Phyo Win Pe ◽  
Kyeung Il Park ◽  
Je Min Lee ◽  
...  

Abstract Background Past research has shown that virus-induced phytoene desaturase (PDS) gene silencing via agroinjection in the attached and detached fruit of tomato plants results in a pale-yellow fruit phenotype. Although the PDS gene is often used as a marker for gene silencing in tomatoes, little is known about the role of PDS in fruit ripening. In this study, we investigated whether the pepper PDS gene silenced endogenous PDS genes in the fruit of two tomato cultivars, Dotaerang Plus and Legend Summer. Results We found that the pepper PDS gene successfully silenced endogenous PDS in tomato fruit at a silencing frequency of 100% for both cultivars. A pale-yellow silenced area was observed over virtually the entire surface of individual fruit due to the transcriptional reduction in phytoene desaturase (PDS), zeta-carotene (ZDS), prolycopene isomerase (CrtlSO), and beta-carotene hydroxylase (CrtR-b2), which are the carotenoid biosynthesis genes responsible for the red coloration in tomatoes. PDS silencing also affected the expression levels of the fruit-ripening genes Tomato AGAMOUS-LIKE1 (TAGL1), RIPENING INHIBITOR (RIN), pectin esterase gene (PE), lipoxygenase (LOX), FRUITFULL1/FRUITFUL2 (FUL1/FUL2), and the ethylene biosynthesis and response genes 1-aminocyclopropane-1-carboxylate oxidase 1 and 3 (ACO1 and ACO3) and ethylene-responsive genes (E4 and E8). Conclusion These results suggest that PDS is a positive regulator of ripening in tomato fruit, which must be considered when using it as a marker for virus-induced gene silencing (VIGS) experiments in order to avoid fruit-ripening side effects.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 530d-530
Author(s):  
Gary F. Polkinz ◽  
David J. Hannapel ◽  
Richard J. Gladon

Tomato fruit ripening is characterized by a decrease in chlorophyll content and an increase in lycopene synthesis. We are interested in the role of chlorophyll metabolism as it relates to tomato fruit ripening. 5-Aminolevulinic acid dehydratase (ALAD) is the first committed enzyme in the chlorophyll biosynthetic pathway, and it catalyzes the conversion of two 5-aminolevulinic acid molecules into porphobilinogen. We have isolated a full-length tomato ALAD cDNA clone from a tomato fruit library. Sequence analysis showed that this tomato ALAD was highly homologous to ALAD found in spinach and pea, and the analysis predicted a protein of 46.8 kDa. Southern analysis indicated that 1 to 3 copies of the ALAD gene are present in the tomato genome. Northern analysis suggested that the gene is expressed constitutively throughout tomato fruit development. Currently, we are subcloning the fragment into an E. coli expression vector in order to obtain protein for antibody production for Western analysis.


1987 ◽  
Vol 84 (3) ◽  
pp. 911-917 ◽  
Author(s):  
Birgit Piechulla ◽  
Richard E. Glick ◽  
Hubert Bahl ◽  
Anastasios Melis ◽  
Wilhelm Gruissem

2009 ◽  
Vol 103 (1) ◽  
pp. 116-119 ◽  
Author(s):  
G.G. Romero ◽  
C.C. Martinez ◽  
E.E. Alanís ◽  
G.A. Salazar ◽  
V.G. Broglia ◽  
...  

2019 ◽  
Vol 10 ◽  
Author(s):  
Stefan Petrasch ◽  
Christian J. Silva ◽  
Saskia D. Mesquida-Pesci ◽  
Karina Gallegos ◽  
Casper van den Abeele ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document