Characterization of tomato fruit ripening and analysis of gene expression in F1 hybrids of the ripening inhibitor (rin) mutant

2005 ◽  
Vol 123 (3) ◽  
pp. 331-338 ◽  
Author(s):  
Mamiko Kitagawa ◽  
Hirotaka Ito ◽  
Takeo Shiina ◽  
Nobutaka Nakamura ◽  
Takahiro Inakuma ◽  
...  
2000 ◽  
Vol 78 (5) ◽  
pp. 607-618 ◽  
Author(s):  
J.M. Blumer ◽  
R.P. Clay ◽  
C.W. Bergmann ◽  
P. Albersheim ◽  
A. Darvill

1989 ◽  
Vol 13 (3) ◽  
pp. 303-311 ◽  
Author(s):  
Wolfgang Schuch ◽  
Colin R. Bird ◽  
John Ray ◽  
Christopher J. S. Smith ◽  
Colin F. Watson ◽  
...  

2017 ◽  
Vol 8 ◽  
Author(s):  
Lu Yang ◽  
Guojian Hu ◽  
Ning Li ◽  
Sidra Habib ◽  
Wei Huang ◽  
...  

1986 ◽  
Vol 81 (2) ◽  
pp. 395-403 ◽  
Author(s):  
M. Scott Biggs ◽  
Robert W. Harriman ◽  
Avtar K. Handa

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249575
Author(s):  
Yasuhiro Ito ◽  
Nobutaka Nakamura ◽  
Eiichi Kotake-Nara

The tomato (Solanum lycopersicum) ripening inhibitor (rin) mutation completely represses fruit ripening, as rin fruits fail to express ripening-associated genes and remain green and firm. Moreover, heterozygous rin fruits (rin/+) ripen normally but have extended shelf life, an important consideration for this perishable fruit crop; therefore, heterozygous rin has been widely used to breed varieties that produce red tomatoes with improved shelf life. We previously used CRISPR/Cas9 to produce novel alleles at the rin locus. The wild-type allele RIN encodes a MADS-box transcription factor and the novel allele, named as rinG2, generates an early stop codon, resulting in C-terminal truncation of the transcription factor. Like rin fruits, rinG2 fruits exhibit extended shelf life, but unlike rin fruits, which remain yellow-green even after long-term storage, rinG2 fruits turn orange due to ripening-associated carotenoid production. Here, to explore the potential of the rinG2 mutation for breeding, we characterized the effects of rinG2 in the heterozygous state (rinG2/+) compared to the effects of rin/+. The softening of rinG2/+ fruits was delayed compared to the wild type but to a lesser degree than rin/+ fruits. Lycopene and β-carotene levels in rinG2/+ fruits were similar to those of the wild type, whereas rin/+ fruits accumulated half the amount of β-carotene compared to the wild type. The rinG2/+ fruits produced lower levels of ethylene than wild-type and rin/+ fruits. Expression analysis revealed that in rinG2/+ fruits, the rinG2 mutation (like rin) partially inhibited the expression of ripening-associated genes. The small differences in the inhibitory effects of rinG2 vs. rin coincided with small differences in phenotypes, such as ethylene production, softening, and carotenoid accumulation. Therefore, rinG2 represents a promising genetic resource for developing tomato cultivars with extended shelf life.


2013 ◽  
Vol 781-784 ◽  
pp. 1685-1688
Author(s):  
Ling Li ◽  
Guo Xia Zhu ◽  
Zheng Liu ◽  
Tie Ling Liu

Virus-induced gene silencing (VIGS) is a powerful tool for the study of gene function and down regulate specific gene expression in plant. The RIN transcription factor is an important developmental regulator in tomato fruit ripening. In this work, the TRV-LeRIN infiltrated fruit significantly developed green color phenotypes, whereas the control fruit would turn red normally. Dissection of silenced areas for analysis identified whether the LeRIN gene is silenced or not. Taken together, we successfully applied syringe infiltration method of VIGS to silence the LeRIN gene in tomato fruit. These results are critical for understanding the mechanism of tomato fruit ripening.


Sign in / Sign up

Export Citation Format

Share Document