Thermal Properties of Linear-Low Density Polyethylene (LLDPE)/Soya Spent Powder Blends with the Addition of Epoxidised Natural Rubber

2013 ◽  
Vol 795 ◽  
pp. 433-437 ◽  
Author(s):  
S.T. Sam ◽  
N.Z. Noriman ◽  
S. Ragunathan ◽  
O.H. Lin ◽  
H. Ismail

Soya spent powder as an inexpensive and renewable source has been used as a filler for linear-low density polyethylene (LLDPE) in this study. Linear-low density polyethylene (LLDPE)/soya spent powder composites were prepared by using Haake internal mixer. The mixing time was 10 minutes at 150°C with rotor speed 50 rpm. Epoxidised natural rubber (ENR 50) has been used as a compatibilizer in the present study. The thermal properties of the LLDPE/soya spent powder composites with and without ENR were studied with a differential scanning calorimetry (DSC). The crystallinity of the LLDPE/soya spent powder composites decreased with increasing soya spent powder content. However, the addition of ENR 50 as a compatibilizer increased the crystallinity of the LLDPE/soya spent powder composites.

2013 ◽  
Vol 33 (7) ◽  
pp. 579-588 ◽  
Author(s):  
S.T. Sam ◽  
H. Ismail ◽  
H.P.S. Abdul Khalil

Abstract In the present study, linear low density polyethylene (LLDPE)/soya powder blends were compatibilized with epoxidized natural rubber (ENR 50) and exposed to natural weathering. The exposure period for the blends was 1 year. It was found that the degradability of the compatibilized blends was higher than that of uncompatibilized blends. Fourier transform infrared (FTIR) spectra, the tensile test, scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) were applied to analyze the degradability of the blends. IR spectra showed that the carbonyl index (CI) of the blends increased as a function of exposure period and soya powder content. The compatibilized blends gave higher carbonyl indices. The retention tensile strength and elongation at break (Eb) of the compatibilized blends after weathering was generally lower than for the uncompatibilized blends. The increase of crystallinity also indicated a reduction of the amorphous portion after degradation. The higher crystallinity in compatibilized blends further confirms the higher degradability of ENR 50 compatibilized blends. The weight loss and molecular weight change indicated that the incorporation of ENR 50 into LLDPE/soya powder blends can enhance the degradability of the blends upon outdoor exposure.


2015 ◽  
Vol 815 ◽  
pp. 9-13
Author(s):  
P. Santhiya ◽  
S.T. Sam ◽  
H. Kamarudin ◽  
S. Ragunathan ◽  
N.Z. Noriman ◽  
...  

The effects of adding hexanedioic acid (HA) into low density polyethylene (LDPE)/jackfruit seeds (JSF) blends on the properties were investigated by using differential scanning calorimetry (DSC). The influence of the crystallinity and thermal properties of HA on LDPE at various compositions was investigated. JSF was blended with LDPE by using internal mixer (Brabender) at temperature 150°C. JSF content was varied from 0 to 20 wt%. Crystallinity of the blends was significantly reduced with increasing JSF content and further increased with the presence of HA. Therefore, the crystallinity of the blends was improved with the presence of HA.


2015 ◽  
Vol 815 ◽  
pp. 14-18
Author(s):  
P. Santhiya ◽  
S.T. Sam ◽  
H. Kamarudin ◽  
S. Ragunathan ◽  
N.Z. Noriman ◽  
...  

The properties of blends made from low density polyethylene (LDPE) with various concentration of jackfruit seeds flour (JSF) with the presence of citric acid (CA) were investigated. The JSF content was varied from 0 to 20 wt%. The JSF were blended with LDPE by using an internal mixer (Brabender) at a temperature of 150°C. The test was carried out by using differential scanning calorimetry (DSC), with heating temperature of 100C/min. The crystallinity had improved with the presence of CA. However, the crystallinity slightly reduced with the increasing JSF content and further increased with the presence of CA.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
N. A. M. Jamail ◽  
M. A. M. Piah ◽  
N. A. Muhamad ◽  
Z. Salam ◽  
N. F. Kasri ◽  
...  

Polymeric nanocomposites in which the nanosize fillers are evenly distributed in the polymer material attract attention as an insulating material due to their ability to enhance the materials performance properties of electrical and mechanical. For high voltage (HV) insulation application, one of the targets is to obtain new insulators with improved dielectric properties. This paper presents the outcome of an experimental study to determine the conductivity level of the linear low-density polyethylene- (LLDPE-)natural rubber (NR) compound, filled with different amount of SiO2and TiO2nanofiller by using the polarization and depolarization current (PDC) measurement technique. linear low-density polyethylene (LLDPE) and natural rubber (NR) with the ratio composition of 80 : 20 are selected as a base polymer. The experiment was conducted to find PDC pattern and conductivity variations of each of the LLDPE-NR/SiO2and LLDPE-NR/TiO2samples. The results show that the addition of SiO2filler exhibited less conductivity compared to TiO2filler with certain percentage. From the study, it can be concluded that LLDPE-NR/SiO2is a better insulator compared with LLDPE-NR/TiO2.


Sign in / Sign up

Export Citation Format

Share Document