Development of a Homogeneous Model Municipal Solid Waste

2013 ◽  
Vol 831 ◽  
pp. 331-335 ◽  
Author(s):  
Ren Peng ◽  
Yu Jing Hou ◽  
Xue Dong Zhang ◽  
Qing Lei Sun

A model waste mixing with kaolin, sand, and peat was developed. The physical properties of the waste were compared with the real municipal solid waste (MSW). The influence of unit weight on compression factor, shear strength, and saturated hydraulic conductivity was acquired. In addition, the homogeneous of the soil model was detected using the IWHR 450g-ton centrifuge and the newly developed centrifuge-robot.

2018 ◽  
Vol 144 (9) ◽  
pp. 04018080 ◽  
Author(s):  
Miriam Gonçalves Miguel ◽  
Bruno Cesar Mortatti ◽  
Jorge Luiz da Paixão Filho ◽  
Sueli Yoshinaga Pereira

2017 ◽  
Vol 65 ◽  
pp. 63-74 ◽  
Author(s):  
Han Ke ◽  
Jie Hu ◽  
Xiao Bing Xu ◽  
Wen Fang Wang ◽  
Yun Min Chen ◽  
...  

2015 ◽  
Vol 18 (2) ◽  
pp. 165-171 ◽  
Author(s):  
Maryam Mokhtari ◽  
Ali Akbar Heshmati R. ◽  
Nader Shariatmadari

<p>The compression ratio of Municipal Solid Waste (MSW) is an essential parameter for evaluation of waste settlement. Since it is relatively time-consuming to determine compression ratio from oedometer tests and there exist difficulties associated with working on waste materials, it will be useful to develop models based on waste physical properties. Therefore, present research attempts to develop proper prediction models using ANFIS and ANN models. The compression ratio was modeled as a function of the physical properties of waste including dry unit weight, water content, and biodegradable organic content. A reliable experimental database of oedometer tests, taken from the literature, was employed to train and test the ANN and ANFIS models. The performance of the developed models was investigated according to different statistical criteria (i.e. correlation coefficient, root mean squared error, and mean absolute error) recommended by researchers. The final models have demonstrated the correlation coefficients higher than 90% and low error values; so, they have capability for acceptable prediction of municipal solid waste compression ratio. Furthermore, the values of performance measures obtained for ANN and ANFIS models indicate that the ANFIS model performs better than ANN model.</p><p> </p><p><strong>Resumen</strong></p><p>El índice de compresión de residuos sólidos es un parámetro esencial para la evaluación del asentamiento de un basurero municipal. Debido al desgaste de tiempo para determinar el índice de compresión a partir de pruebas edométricas y debido a las dificultades asociadas al trabajo con materiales desechados es necesario desarrollar modelos basados en las propiedades físicas de los desechos solidos. Además, la presente investigación pretende  desarrollar modelos de predicción apropiados a partir de los esquemas ANFIS y ANN. El índice de comprensión se modeló como una función de propiedades físicas de desechos que incluyen el peso seco de una unidad, el contenido de agua y el contenido orgánico biodegradable. De la literatura se tomó una base de datos confiable de pruebas edométricas experimentales que fue empleada para preparar y evaluar los modelos ANFIS y ANN. El desempeño de los modelos desarrollados fue investigado de acuerdo con diferentes criterios estadísticos (por ejemplo, el coeficiente de correlación, el error cuadrático medio y el error medio absoluto) recomendados por investigadores. Los modelos finales han demostrado coeficientes de correlación mayores al 90 por ciento y valores bajos de error. Esto significa que estos modelos tienen una capacidad de predicción aceptable para el índice de comprensión del basurero municipal. Además, los valores de las medidas de desempeño obtenidos para los modelos ANFIS y ANN indican que el modelo ANFIS tiene una mayor asertividad que el modelo ANN.</p><p><strong><br /></strong></p>


Environments ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 26
Author(s):  
Muhammad Rashid Iqbal ◽  
Hiniduma Liyanage Damith Nandika ◽  
Yugo Isobe ◽  
Ken Kawamoto

Gas transport parameters such as gas diffusivity (Dp/D0), air permeability (ka), and their dependency on void space (air-filled porosity, ε) in a waste body govern convective air and gas diffusion at solid waste dumpsites and surface emission of various gases generated by microbial processes under aerobic and anaerobic decompositions. In this study, Dp/D0(ε) and ka(ε) were measured on dumping solid waste in Japan such as incinerated bottom ash and unburnable mixed waste as well as a buried waste sample (dumped for 20 years). Sieved samples with variable adjusted moistures were compacted by a standard proctor method and used for a series of laboratory tests for measuring compressibility, saturated hydraulic conductivity, and gas transport parameters. Results showed that incinerated bottom ash and unburnable mixed waste did not give the maximum dry density and optimum moisture content. Measured compressibility and saturated hydraulic conductivity of tested samples varied widely depending on the types of materials. Based on the previously proposed Dp/D0(ε) models, the diffusion-based tortuosity (T) was analyzed and unique power functional relations were found in T(ε) and could contribute to evaluating the gas diffusion process in the waste body compacted at different moisture conditions.


2019 ◽  
pp. 1-8
Author(s):  
Yingfeng Wang ◽  
Zhenying Zhang ◽  
Hui Xu ◽  
Dazhi Wu ◽  
Xinyu He ◽  
...  

Soil Research ◽  
2008 ◽  
Vol 46 (1) ◽  
pp. 37 ◽  
Author(s):  
M. R. Sargeant ◽  
C. Tang ◽  
P. W. G. Sale

Landholder observations indicate that the growth of Distichlis spicata in saline discharge sites improves the soil condition. An extensive soil sampling survey was conducted at the Wickepin field site in Western Australia, where D. spicata had been growing for 8 years, to test the hypothesis that this halophytic grass will make improvements in chemical and physical properties of the soil. Soil measurements included saturated hydraulic conductivity, water-stable aggregates, root length and dry weight, electrical conductivity, pH, and soil nitrogen and carbon. Results confirm that marked differences in soil properties occurred under D. spicata. For example, a 12-fold increase in saturated hydraulic conductivity occurred where D. spicata had been growing for 8 years, compared to adjacent control soil where no grass had been growing. There were also improvements in aggregate stability, with the most notable improvements in the top 0.10 m of soil, again with the greatest improvements occurring where 8 years of growth had occurred. Soil nitrogen and carbon increased under the sward, with the biggest increases occurring in the top 0.10 m of soil. Electrical conductivity measurements were more variable, mostly due to the large spatial and temporal variation encountered. However, the findings generally support the proposition that the growth of D. spicata does not lead to an accumulation of salt within the rooting zone.


Sign in / Sign up

Export Citation Format

Share Document