transport parameters
Recently Published Documents


TOTAL DOCUMENTS

1252
(FIVE YEARS 210)

H-INDEX

58
(FIVE YEARS 7)

Author(s):  
Alraune Zech ◽  
Matthijs de Winter

AbstractWe investigate the upscaling of diffusive transport parameters using a stochastic framework. At sub-REV (representative elementary volume) scale, the complexity of the pore space geometry leads to a significant scatter of the observed diffusive transport. We study a large set of volumes reconstructed from focused ion beam-scanning electron microscopy data. Each individual volume provides us sub-REV measurements on porosity and the so-called transport-ability, being a dimensionless parameter representing the ratio of diffusive flux through the porous volume to that through an empty volume. The detected scatter of the transport-ability is mathematically characterized through a probability distribution function (PDF) with a mean and variance as function of porosity, which includes implicitly the effect of pore structure differences among sub-REV volumes. We then investigate domain size effects and predict when REV scale is reached. While the scatter in porosity observations decreases linearly with increasing sample size as expected, the observed scatter in transport-ability does not converge to zero. Our results confirm that differences in pore structure impact transport parameters at all scales. Consequently, the use of PDFs to describe the relationship of effective transport coefficients to porosity is advantageous to deterministic semiempirical functions. We discuss the consequences and advocate the use of PDFs for effective parameters in both continuum equations and data interpretation of experimental or computational work. The presented statistics-based upscaling technique of sub-REV microscopy data provides a new tool in understanding, describing and predicting macroscopic transport behavior of microporous media.


2022 ◽  
Vol 9 ◽  
Author(s):  
Yunzhu An ◽  
Menghan Su ◽  
Yuanchao Hu ◽  
Shangmao Hu ◽  
Tao Huang ◽  
...  

The environmental conditions affect the external insulation performance of power equipment. In order to study the physical characteristics of air discharge, the microscopic process of electron–molecule collision in the air based on the Boltzmann equation has been studied in this paper. The influence of humidity on the air gap insulation performance was also analyzed. The calculation results show that with the temperature 300 K and the pressure 1.0 atm, the electron energy distribution function and electron transport parameters varied with the air relative humidity. As the air relative humidity is increased by each 30%, the average electron energy decreases by about 0.2 eV, the reduced electron mobility decreases by about 0.25 × 1023 [1/(V·m·s)], the reduced electron diffusion coefficient decreases by about 0.2 × 1024 [1/(m s)], and the effective ionization coefficient decreases by about 4 × 10−24 m2. As the air relative humidity increases from 0% to 60%, the critical breakdown electric field increases by 1.22 kV/cm.


Author(s):  
С.Г. Дорофеев ◽  
Н.Н. Кононов ◽  
С.С. Бубенов ◽  
В.М. Попеленский ◽  
А.А. Винокуров

The electrical characteristics of thin films formed from Si nanoparticles (nc-Si) with various degrees of doping are studied. To exclude the influence of ionic conductivity, the current parameters of the films were recorded in an ultrahigh vacuum (P ~ 3 – 5∙10–9 Torr) with preliminary high-temperature (9500C) annealing. An analysis of the temperature dependences of the conductivity showed that in nc-Si films formed from heavily doped nanoparticles (the concentration of free electrons ne is greater than 1019 cm-3), the transport is determined by variable-length hopping (VRH). In these samples, the Mott conductivity prevails at temperatures above 300C and at lower temperatures, the Efros-Shklovskii type variable range hopping conduction is dominate. In films with a medium level of doping of nanoparticles (ne <1019 cm-3), transport is realized by the Mott, Efros - Shklovskii and thermally activated conductivities. At the same time, thermally activated conductivity is dominated at temperatures above 560K. In nc-Si films formed from undoped nanoparticles, the transport parameters are determined by thermally activated conductivity and Mott's conductivity. Conductivity of Efros - Shklovskii is not observed in such films. From the analysis of the parameters corresponding to the Mott and Efros - Shklovsky conductivities, the localization lengths of wave functions, the density of states at the Fermi level (g (EF)), and average hopping lengths are found. The average hopping lengths in nc-Si films from nanoparticles pre-etched in HF are in the range 56 - 86 nm, which indicates that hopping in such films occurs via intermediate nanoparticles.


2022 ◽  
Author(s):  
I. Dhanya ◽  
S. Heera ◽  
Soosen Samuel M. ◽  
Sreejith K. Pisharady

The thermoelectric properties of europium-doped graphene oxide nanocomposite and determination of barrier hopping transport parameters.


Author(s):  
Toshiaki Makabe

Abstract In a high-frequency capacitively coupled plasma (HF-CCP), few studies have been carried out for the transport of charged particles in the active bulk plasma with high electronegativity. The electric field E(t), specifically, time-varying reduced field E(t)/Ng provides key knowledge about the characteristics of collisional bulk plasma. Numerical modeling is the only method for estimating E(t)/Ng, while a limited number of collision cross sections and related transport parameters are available. Under these circumstances, we discuss how to estimate the reduced field E(t)/Ng, i.e., E(t) in active bulk plasma with high electronegativity in HF-CCP through investigation of the correlation between the DC-critical reduced field (E/Ng)Crit: and the HF-effective reduced field (E(t)/Ng)eff . Our previous discussion on the correlation is validated by increasing the number of results of (E(t)/Ng)eff . The relation between the electronegativity and the ionization degree is derived from the sustainable condition in the bulk plasma.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 16
Author(s):  
Elzbieta Radzyminska-Lenarcik ◽  
Kamila Maslowska ◽  
Wlodzimierz Urbaniak

Polymer inclusion membranes (PIMs) are an attractive approach to the separation of metals from an aqueous solution. This study is concerned with the use of 2-alkylimidazoles (alkyl = methyl, ethyl, propyl, butyl) as ion carriers in PIMs. It investigates the separation of copper (II), zinc (II), cobalt (II), and nickel (II) from aqueous solutions with the use of polymer inclusion membranes. PIMs are formed by casting a solution containing a carrier (extractant), a plasticizer (o-NPPE), and a base polymer such as cellulose triacetate (CTA) to form a thin, flexible, and stable film. The topics discussed include transport parameters, such as the type of carrier, initial fluxes, separation coefficients of copper in relation to other metals, as well as transport recovery of metal ions. The membrane was characterized using AFM and SEM to obtain information on its composition.


Author(s):  
S K Dhali

Abstract The fluid models are frequently used to describe a non-thermal plasma such as a streamer discharge. The required electron transport data and rate coefficients for the fluid model are parametrized using the local field approximation (LFA) in first order models and the local-mean-energy approximation (LMEA) in second order models. We performed Monte Carlo simulations in Nitrogen gas with step changes in the E/N (reduced electric field) to study the behavior of the transport properties in the transient phase. During the transient phase of the simulation, we extract the instantaneous electron mean energy, which is different from the steady state mean electron energy, and the corresponding transport parameters and rate coefficients. Our results indicate that the mean electron energy is not a suitable parameter for mobility/drift of electrons due to big difference in momentum relaxation and energy relaxation. However, the high energy threshold rates such as ionization show a strong correlation to mean electron energy. In second order models where the energy-balance equation is solved, we suggest that it would rather be appropriate to use the local electric field to find electron drift velocity in gases such as Nitrogen and the local mean electron energy to determine the ionization and excitation rates.


Photochem ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 523-536
Author(s):  
Mohamed Salleh Mohamed Saheed ◽  
Norani Muti Mohamed ◽  
Balbir Singh Mahinder Singh ◽  
Qamar Wali ◽  
Mohamed Shuaib Mohamed Saheed ◽  
...  

The effect of foam-like 3D graphene (3DG) in an electron transport material (ETM), viz. ZnO thin film, on the steady-state photoluminescence (PL), light-harvesting efficiency (LHE), photocurrent density (JSC), photovoltage (VOC), and charge transport parameters of perovskite solar cells (PSCs) are systematically investigated. The ETM is developed by spin coating a ZnO precursor solution containing varying amounts of 3DG on conducting glass substrates and appropriate annealing. A significant improvement in the photoconversion efficiency of PSCs is observed for a low concentration of 3DG in ZnO. The current–voltage and electrochemical impedance spectroscopy measurements show that the addition of 3DG enhances the VOC due to efficient electron–hole separation and charge transport compared to the pristine ZnO. These studies offer a route for further advances in enhancing the optoelectronic properties of ETM for artificial photosynthesis and photocatalysis devices.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Xuanting Ji ◽  
Yan Liu ◽  
Ya-Wen Sun ◽  
Yun-Long Zhang

Abstract We present effective field theories for the weakly coupled Weyl-Z2 semimetal, as well as the holographic realization for the strongly coupled case. In both cases, the anomalous systems have both the chiral anomaly and the Z2 anomaly and possess topological quantum phase transitions from the Weyl-Z2 semimetal phases to partly or fully topological trivial phases. We find that the topological phase transition is characterized by the anomalous transport parameters, i.e. the anomalous Hall conductivity and the Z2 anomalous Hall conductivity. These two parameters are nonzero at the Weyl-Z2 semimetal phase and vanish at the topologically trivial phases. In the holographic case, the different behavior between the two anomalous transport coefficients is discussed. Our work reveals the novel phase structure of strongly interacting Weyl-Z2 semimetal with two pairs of nodes.


2021 ◽  
Vol 35 (1) ◽  
pp. 71-82
Author(s):  
Nikolay Stoyanov

An identification method for determining the aquifer’s mass transport parameters is proposed, based on data from field tracer tests with a pulse or a continuous source and an arbitrary position of the observation well in respect to the tracer entry point. The method is also applicable in the presence of a representative set of data on changes in the concentration of pollutants at different points in the aquifer around a short-term (instantaneous) or a continuous surface or underground source. The identification procedure is based on the automated comparison of the observations data with a series of theoretical curves by varying the required parameters in order to achieve maximum compliance. The tracer transport is represented by analytical solutions of the partial differential equation for mass transfer in a homogeneous and isotropic two-dimensional porous media. The developed computer programs include numerical optimization using the Levenberg-Marquardt algorithm. Results from tests performed in order to assess reliability and errors of detection and identification are presented. Using the programs, the mass transport parameters: active porosity n0, effective (sorption) porosity nS, longitudinal dispersivity αL, transverse dispersivity αT and rate constant γ can be determined.


Sign in / Sign up

Export Citation Format

Share Document