Identification of the Dynamic Load Supplied on Top Pier of High Speed Railway Bridge

2013 ◽  
Vol 831 ◽  
pp. 348-353
Author(s):  
Ya Ping Li ◽  
Meng Yang

With the development of railway transportation, the traffic load increased continuously and it had the adverse effect on the system of pier-foundation. The quantitative analysis of the load supplied on the top pier is necessary for analyzing the dynamic response of pier-foundation system. Based on the theory of vibration inverse analysis and finite element method, the paper identified the dynamical load supplied on the top pier in vertical and the transverse direction. Combined with the vibration and acceleration history measured by the field test in Xiaolinhe Bridge, the vertical and transverse direction vibration-load history curves were calculated when the train speeds were 153 km/h and 206 km/h respectively. The results indicated that the amplitude of dynamic load increased with the higher speed of train.

2021 ◽  
Author(s):  
Michael Reiterer ◽  
Andrei Firus ◽  
Alois Vorwagner ◽  
Geert Lombaert ◽  
Jens Schneider ◽  
...  

<p>In 2019, the German Federal Railway Authority commissioned the consortium TU Darmstadt, KU Leuven, AIT-Austrian Institute of Technology and REVOTEC to develop a new dynamic load model for high-speed railway bridges. It aims to cover the envelopes of the dynamic train signatures and acceleration responses for all currently operating trains and the current HSLM (high-speed load model), given in the Eurocode. In addition, the development of the new load model should also include possible configurations of fast freight trains and future train configurations. An overview of the planned content of the research project and selected results of the current work will be presented.</p>


2016 ◽  
Vol 10 (4) ◽  
pp. 488-498 ◽  
Author(s):  
Xin Liang ◽  
Qian-gong Cheng ◽  
Jiu-jiang Wu ◽  
Jian-ming Chen

Author(s):  
Diana Khairallah ◽  
Olivier Chupin ◽  
Juliette Blanc ◽  
Pierre Hornych ◽  
Jean-Michel Piau ◽  
...  

The design and durability of high-speed railway lines is a major challenge in the field of railway transportation. In France, 40 years of feedback on the field behavior of ballasted tracks led to improvements in the design rules. However, the settlement and wear of ballast, caused by dynamic stresses at high frequencies, remains a major problem on high-speed tracks leading to high maintenance costs. Studies have shown that this settlement is linked to the high acceleration produced in the ballast layer by high-speed trains traveling on the track, disrupting the granular assembly. The “Bretagne–Pays de la Loire” high-speed line (BPL HSL), with its varied subgrade conditions, represents the first large-scale application of asphalt concrete (GB) as the ballast sublayer. This line includes 77 km of conventional track with a granular sublayer of unbound granular material (UGM) and 105 km of track with an asphalt concrete sublayer under the ballast. During construction, instruments such as accelerometers, anchored deflection sensors, and strain gages, among others, were installed on four sections of the track. This paper examines the instrumentation as well as the acquisition system installed on the track. The data processing is explained first, followed by a presentation of the ViscoRail software, developed for modeling railway tracks. The bituminous section’s behavior and response is modeled using a multilayer dynamic response model, implemented in the ViscoRail software. A good match between experimental and calculated results is highlighted.


Sign in / Sign up

Export Citation Format

Share Document