Economic Study on Sewage Treatment Engineering Based on LCC

2013 ◽  
Vol 838-841 ◽  
pp. 2689-2693
Author(s):  
Hong Guang Chen ◽  
Chen Yang Li ◽  
Dan Dan Xie

To enhance sewage treatment engineering economy, LCC theory as the instruction, through comprehensive systematic analysis of the sewage treatment project construction and operation costs, economic factors affecting sewage treatment engineering, puts forward some countermeasures to improve the economics of wastewater treatment project, for the sewage treatment project construction and operation of cost control to provide theoretical support.

This Study Was Made To Study The Use Of Circular Aeration Tanks Instead Of Rectangular One In Wastewater Treatment Plants. The Study Covered The Effect Of Tank Geometric Shape On Action Stability, Effective Parameters Homogeneity And Treatment Efficiency Inside The Aeration Tank And Its Reflection On The Final Sedimentation Tank Performance. A Pilot Scale Was Erected In Balaqs Wastewater Treatment Plant Pilot Consists From Two Lines One Circular Aeration Tank Followed By Final Settling Tank And Second Rectangular Aeration Tank Followed By Final Settling Tank For Comparison Purpose Under The Same Conditions. The Samples Were Taken Continuously For 5 Weeks From The Inlet, Outlet For (Bod, & Tss) To Measure The Aeration Removal Efficiency. Also Measurements Inside Both Types Of Aeration Tanks To Determine The Parameters Of Temperature & Do Distribution And Stability In Different Depths And Sides Of Tank. Also The Consumed Power Had Been Measured. The Results Shows That The Circular Aeration Tank Achieved Better Stability Inside The Tank With Minimal Variation In Both Of Do And Temperature That Varied Widely In The Rectangular Tank Between Different Depths And Also Longitudinally And In Cross Section Directions That Affects Mainly On The Tank Efficiency And The Consumed Power Needed For Surface Aerators Operation. The Circular Safe About 50% Of The Consumed Power That Also Safe In The Construction And Operation Costs For Such Treatment.


2020 ◽  
Vol 5 (1) ◽  
pp. 8-12
Author(s):  
Nandini Moondra ◽  
Namrata D Jariwala ◽  
Robin A Christian

Even after secondary treatment, wastewater has a high convergence of nutrients, which frequently causes eutrophication and different destructive impacts on biological systems. Wastewater treatment is a critical activity that must be considered necessary for the improvement of society. The secondary contamination of sludge formation and disposal also makes the treatment difficult. The vitality and financial amount required for tertiary treatment of wastewater remain an issue for local bodies, limiting its use for treatment. Hence, to address most of the challenges of sewage treatment, an algal-based system can be more affordable and biologically secure with the additional advantages of asset recuperation and reusing. Phycoremediation system even eliminates the need for tertiary treatment. The paper illustrates the benefits and challenges of phycoremediation, with some recent studies on microalgae as a wastewater treatment alternative along with the factors affecting the wastewater treatment through microalgae. The in-depth knowledge of the microalgal treatment in every aspect could result in an advancement to the conventional treatment process if applied in the field.


2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


2018 ◽  
Vol 45 (1) ◽  
pp. 92-107
Author(s):  
Kyeong Soo Jeong ◽  
◽  
Dongmyung Lee ◽  
Mirang Seo ◽  
◽  
...  

1990 ◽  
Vol 22 (3-4) ◽  
pp. 65-72 ◽  
Author(s):  
H.-H. Schierup ◽  
H. Brix

Since 1983 approximately 150 full-scale emergent hydrophyte based wastewater treatment plants (reed beds) have been constructed in Denmark to serve small wastewater producers. The development of purification performance for 21 plants representing different soil types, vegetation, and hydraulic loading rates has been recorded. Cleaning efficiencies were typically in the range of 60-80% reduction for BOD, 25-50% reduction for total nitrogen, and 20-40% reduction for total phosphorus. The mean effluent BOD, total nitrogen and total phosphorus concentrations of the reed beds were 19 ± 10, 22 ± 9 and 6.7 ± 3.2 mg/l (mean ± SD), respectively. Thus, the general Danish effluent standards of 8 mg/l for N and 1.5 mg/l for P for sewage plants greater than 5,000 PE cannot be met by the present realised design of EHTS. The main problem observed in most systems is a poor development of horizontal hydraulic conductivity in the soil which results in surface run-off. Since the political demands for effluent quality will be more strict in the future, it is important to improve the performance of small decentral sewage treatment plants. On the basis of experiences from different types of macrophyte based and conventional low-technology wastewater treatment systems, a multi-stage system is suggested, consisting of sedimentation and sand filtration facilities followed by basins planted with emergent and submergent species of macrophytes and algal ponds.


Sign in / Sign up

Export Citation Format

Share Document