The Application of Capacitive Output Impedance of Inverter in Wind Farms

2013 ◽  
Vol 846-847 ◽  
pp. 745-749
Author(s):  
Wei Guo ◽  
Dong Mei Zhao

This paper studies about two parts :one is about principle and construction of the equivalent capacitive output impedance of inverter, the other is that through comparing different compensation strategy of the application of simulation experiment, and verify the effect of C-Inverter.1) In this paper we study the droop control characteristics of three types of inverters with inductive, resistive and capacitive equivalent output impedance respectively, and use the virtual impedance to get C-Inverter in wind power.2) This paper sets up SVC and STATCOM models and improved the converter which changes to capacitive inverter in DIgSLIENT, which are connected to wind power system, verifying the validity of SVC and STATCOM models and the effect of C-Inverter.

2021 ◽  
Vol 252 ◽  
pp. 02001
Author(s):  
Ping He ◽  
Mingming Zheng ◽  
Zhao Li ◽  
Qiyuan Fang ◽  
Xiaopeng Wu

The new energy represented by strong random wind power connecting to the power system may make the problem of inter-area low-frequency oscillation more serious. In this paper, a DFIG-PSS controller based on virtual impedance is constructed to solve the low-frequency oscillation problem in the wind power system. The step response of PSS-VI was carried out to test the effect of the controller to verify the advantages of PSS-VI than traditional PSS. The input signal of PSS-VI which is a controller based on PSS installed virtual impedance is the active power of DFIG. The output signal of PSS-VI is added to the reactive power control loop of rotor side controller of DFIG. DFIG-PSS-VI was built in Digsilent/Powerfactory software, and the simulation was carried out on the system of 4 machines and 2 regions. It is verified that PSS-VI can improve the low-frequency oscillation of wind power system.


2012 ◽  
Vol 608-609 ◽  
pp. 742-747
Author(s):  
Chun Hong Zhao ◽  
Lian Guang Liu ◽  
Zi Fa Liu ◽  
Ying Chen

The integration of wind farms has a significant impact on the power system reliability. An appropriate model used to assess wind power system reliability is needed. Establishing multi-objective models (wind speed model, wind turbine generator output model and wind farm equivalent model) and based on the non-sequential Monte Carlo simulation method to calculate risk indicators is a viable method for quantitatively assessing the reliability of power system including wind farms. The IEEE-RTS 79 test system and a 300MW wind farm are taken as example.The calculation resluts show that using the multi-objective models can improve accuracy and reduce error; the higher average wind speed obtains the better system reliabitity accordingly.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Han Wang ◽  
Shuang Han ◽  
Yongqian Liu ◽  
Aimei Lin

The wind speed sequences at different spatial positions have a certain spatiotemporal coupling relationship. It is of great significance to analyze the clustering effect of the wind farm(s) and reduce the adverse impact of large-scale wind power integration if we can grasp this relationship at multiple scales. At present, the physical method cannot optimize the time-shifting characteristics in real time, and the research scope is concentrated on the wind farm. The statistical method cannot quantitatively describe the temporal relationship and the speed variation among wind speed sequences at different spatial positions. To solve the above problems, a quantification method of wind speed time-shifting characteristics based on wind process is proposed in this paper. Two evaluation indexes, the delay time and the decay speed, are presented to quantify the time-shifting characteristics. The effectiveness of the proposed method is verified from the perspective of the correlation between wind speed sequences. The time-shifting characteristics of wind speed sequences under the wind farms scale and the wind turbines scale are studied, respectively. The results show that the proposed evaluation method can effectively achieve the quantitative analysis of time-shifting and could improve the results continuously according to the actual wind conditions. Besides, it is suitable for any spatial scale. The calculation results can be directly applied to the wind power system to help obtain the more accurate output of the wind farm.


2013 ◽  
Vol 316-317 ◽  
pp. 64-67
Author(s):  
You Jie Ma ◽  
Yu Zhang ◽  
Xue Song Zhou

Wind power is a kind of special electric power, because of the volatility of the wind, making voltage stability has become an important research problem wind power system must facing with. Therefore, according to the relevant current research status and the main existent problems of wind power system, expounding the difference of voltage stability between the conventional energy sources and the wind power, and the influence of voltage stability to the power system which caused by wind power system. This paper mainly from the definition and the classification to introduce the voltage stability; from the research contents and methods of static and dynamic voltage stability to analyze power systems which contains wind farms, especially emphasizing the necessity of the bifurcation theory used in power system contains wind power. Finally points out that the research trend of analysis and improvement in this area.


Sign in / Sign up

Export Citation Format

Share Document