Monitoring of Calcium Sulphate Phase Transformations Using High-Temperature X-Ray Diffraction

2013 ◽  
Vol 864-867 ◽  
pp. 621-624 ◽  
Author(s):  
Dominik Gazdič ◽  
Iveta Hájková ◽  
Radek Magrla

Within the task the so called high-temperature X-ray diffraction analysis (HT-XRD) was used in the field of sulphated binders. Gypsum or calcium sulphate CaSO4.2H2O is the basic raw material for the sulphated binder production. As it is known by gradual warming of gypsum its different phase transformations can be obtained which significantly differ in its properties. Using this analysis identifications of temperatures of particular phase transformations in the CaSO4·xH2O system can be performed.

2021 ◽  
pp. 174751982098472
Author(s):  
Lalmi Khier ◽  
Lakel Abdelghani ◽  
Belahssen Okba ◽  
Djamel Maouche ◽  
Lakel Said

Kaolin M1 and M2 studied by X-ray diffraction focus on the mullite phase, which is the main phase present in both products. The Williamson–Hall and Warren–Averbach methods for determining the crystallite size and microstrains of integral breadth β are calculated by the FullProf program. The integral breadth ( β) is a mixture resulting from the microstrains and size effect, so this should be taken into account during the calculation. The Williamson–Hall chart determines whether the sample is affected by grain size or microstrain. It appears very clearly that the principal phase of the various sintered kaolins, mullite, is free from internal microstrains. It is the case of the mixtures fritted at low temperature (1200 °C) during 1 h and also the case of the mixtures of the type chamotte cooks with 1350 °C during very long times (several weeks). This result is very significant as it gives an element of explanation to a very significant quality of mullite: its mechanical resistance during uses at high temperature remains.


1991 ◽  
Vol 246 ◽  
Author(s):  
J.A. Horton ◽  
E.P. George ◽  
C.J. Sparks ◽  
M.Y. Kao ◽  
O.B. Cavin ◽  
...  

AbstractA survey by differential scanning calorimetry (DSC) and recovery during heating of indentations on a series of nickel-aluminum alloys showed that the Ni-36 at.% Al composition has the best potential for a recoverable shape memory effect at temperatures above 100°C. The phase transformations were studied by high temperature transmission electron microscopy (TEM) and by high temperature x-ray diffraction (HTXRD). Quenching from 1200°C resulted in a single phase, fully martensitic structure. The initial quenched-in martensites were found by both TEM and X-ray diffraction to consist of primarily a body centered tetragonal (bct) phase with some body centered orthorhombic (bco) phase present. On the first heating cycle, DSC showed an endothermic peak at 121°C and an exothermic peak at 289°C, and upon cooling a martensite exothermic peak at 115° C. Upon subsequent cycles the 289°C peak disappeared. High temperature X-ray diffraction, with a heating rate of 2°C/min, showed the expected transformation of bct phase to B2 between 100 and 200°C, however the bco phase remained intact. At 400 to 450°C the B2 phase transformed to Ni2Al and Ni5Al3. During TEM heating experiments a dislocation-free martensite transformed reversibly to B2 at temperatures less than 150°C. At higher temperatures (nearly 600°C) 1/3, 1/3, 1/3 reflections from an ω-like phase formed. Upon cooling, the 1/3, 1/3, 1/3 reflections disappeared and a more complicated martensite resulted. Boron additions suppressed intergranular fracture and, as expected, resulted in no ductility improvements. Boron additions and/or hot extrusion encouraged the formation of a superordered bct structure with 1/2, 1/2, 0 reflections.


2005 ◽  
Vol 20 (02) ◽  
pp. 94-96 ◽  
Author(s):  
Thomas N. Blanton ◽  
Swavek Zdzieszynski ◽  
Michael Nicholas ◽  
Scott Misture

2008 ◽  
Vol 476 (1-2) ◽  
pp. 60-68 ◽  
Author(s):  
Fabien Bruneseaux ◽  
Elisabeth Aeby-Gautier ◽  
Guillaume Geandier ◽  
Julien Da Costa Teixeira ◽  
Benoît Appolaire ◽  
...  

1999 ◽  
Vol 14 (3) ◽  
pp. 231-233 ◽  
Author(s):  
Raj P. Singh ◽  
Michael J. Miller ◽  
Jeffrey N. Dann

(Na0.6H0.4)(Ta0.7Nb0.3)O3 was synthesized by heating a tantalum/niobium scale containing two sodium tantalate/niobate phases :Na14(Ta0.7Nb0.3)12O37·31H2O and NaH2Ta0.7Nb0.3O4. Powder X-ray diffraction data for (Na0.6H0.4)(Ta0.7Nb0.3)O3 indicated it to be a cubic perovskite (ABO3/ReO3 type structure) with unit cell a0=3.894 Å. The compound is analogous to the mineral lueshite (NaNbO3), and to the high temperature forms of NaTaO3 and NaNbO3. Powder diffraction data for (Na0.6H0.4)(Ta0.7Nb0.3)O3 will be useful in the analysis of synthetic tantalum/niobium concentrates.


1992 ◽  
Vol 60 (21) ◽  
pp. 2692-2694 ◽  
Author(s):  
T. Hasegawa ◽  
T. Kitamura ◽  
H. Kobayashi ◽  
H. Kumakura ◽  
H. Kitaguchi ◽  
...  

2012 ◽  
Vol 14 (2) ◽  
pp. 80-87 ◽  
Author(s):  
Barbara Grzmil ◽  
Bogumił Kic ◽  
Olga Żurek ◽  
Konrad Kubiak

Studies on the transformation of calcium sulphate dihydrate to hemihydrate in the wet process phosphoric acid production The influence of the process temperature from 85°C to 95°C, the content of phosphates and sulphates in the wet process phosphoric acid (about 22-36 wt% P2O5 and about 2-9 wt% SO42-) and the addition of αCaSO4·0.5H2O crystallization nuclei (from 10% to 50% in relation to CaSO4·2H2O) on the transformation of calcium sulphate dihydrate to hemihydrate has been determined. The wet process phosphoric acid and phosphogypsum from the industrial plant was utilized. They were produced by reacting sulphuric acid with phosphate rock (Tunisia) in the DH-process. The X-ray diffraction analysis was used to determine the phase composition and fractions of various forms of calcium sulphates in the samples and the degree of conversion of CaSO4·2H2O to αCaSO4·0.5H2O and CaSO4. It was found that the transformation of CaSO4·2H2O to αCaSO4·0.5H2O should be carried out in the presence of αCaSO4·0.5H2O crystallization nuclei as an additive (in the amount of 20% in relation to CaSO4·2H2O), at temperatures 90±2°C, in the wet process phosphoric acid containing the sulphates and phosphates in the range of 4±1 wt% and 27±1 wt%, respectively.


Sign in / Sign up

Export Citation Format

Share Document