scholarly journals X-ray diffraction analysis of kaolin M1 and M2 via the Williamson–Hall and Warren–Averbach methods

2021 ◽  
pp. 174751982098472
Author(s):  
Lalmi Khier ◽  
Lakel Abdelghani ◽  
Belahssen Okba ◽  
Djamel Maouche ◽  
Lakel Said

Kaolin M1 and M2 studied by X-ray diffraction focus on the mullite phase, which is the main phase present in both products. The Williamson–Hall and Warren–Averbach methods for determining the crystallite size and microstrains of integral breadth β are calculated by the FullProf program. The integral breadth ( β) is a mixture resulting from the microstrains and size effect, so this should be taken into account during the calculation. The Williamson–Hall chart determines whether the sample is affected by grain size or microstrain. It appears very clearly that the principal phase of the various sintered kaolins, mullite, is free from internal microstrains. It is the case of the mixtures fritted at low temperature (1200 °C) during 1 h and also the case of the mixtures of the type chamotte cooks with 1350 °C during very long times (several weeks). This result is very significant as it gives an element of explanation to a very significant quality of mullite: its mechanical resistance during uses at high temperature remains.

2014 ◽  
Vol 70 (8) ◽  
pp. 773-775 ◽  
Author(s):  
Qisheng Lin ◽  
John D. Corbett

The EuAuGe-type CaAuSn phase has been synthesized and single-crystal X-ray diffraction analysis reveals that it has an orthorhombic symmetry (space groupImm2), witha= 4.5261 (7) Å,b= 7.1356 (11) Å andc= 7.8147 (11) Å. The structure features puckered layers that are connected by homoatomic Au—Au and Sn—Sn interlayer bonds. This structure is one of the two parent structures of its high-temperature polymorph (ca873 K), which is an intergrowth structure of the EuAuGe- and SrMgSi-type structures in a 2:3 ratio.


1961 ◽  
Vol 5 ◽  
pp. 276-284
Author(s):  
E. L. Moore ◽  
J. S. Metcalf

AbstractHigh-temperature X-ray diffraction techniques were employed to study the condensation reactions which occur when sodium orthophosphates are heated to 380°C. Crystalline Na4P2O7 and an amorphous phase were formed first from an equimolar mixture of Na2HPO4·NaH2PO4 and Na2HPO4 at temperatures above 150°C. Further heating resulted in the formation of Na5P3O10-I (high-temperature form) at the expense of the crystalline Na4P4O7 and amorphous phase. Crystalline Na5P3O10-II (low-temperature form) appears after Na5P3O10-I.Conditions which affect the yield of crystalline Na4P2O7 and amorphous phase as intermediates and their effect on the yield of Na5P3O10 are also presented.


2005 ◽  
Vol 891 ◽  
Author(s):  
Shin-ichiro Uekusa ◽  
Kunitoshi Aoki ◽  
Mohammad Zakir Hossain ◽  
Tomohiro Fukuda ◽  
Noboru Miura

ABSTRACTWe prepared β-FeSi2 thin-films by using a Pulsed Laser Deposition (PLD) method and succeeded to observe photoluminescence (PL) around 1.5 μm corresponding to β-FeSi2 band from the long-time and high-temperature annealed β-FeSi2 thin-films. The β-FeSi2 thin-films were ablated on Si(111) substrates heated at 550°C. After ablation, long-time and high-temperature thermal annealing was performed in order to improve the crystal-quality. Annealing times were 5, 10, 20 and 40 hrs, and annealing temperature was kept at 900 °C. Crystallinity was evaluated by an X-ray diffraction (XRD) measurement. We have observed eminent improvement on crystal-quality of β-FeSi2 thin-films. Annealed samples show (220) or (202) X-ray diffraction signals of β-FeSi2 and the full width at half maximum (FWHM) of these peaks were 0.27° although the thickness of the samples decreased with annealing time. Thermal-diffusion of Si atoms was observed from substrate to thin-films. Fe atoms in the ablated thin-films also diffused into the substrate. The relationship between the thickness of β-FeSi2 thin-films and the thermal-diffusion were investigated with rutherford backscattering (RBS) measurement. Maximum photoluminescence intensity around 1.5 μm was observed from the thickest β-FeSi2 thin-film with only 5 hrs annealing.


1994 ◽  
Vol 49 (12) ◽  
pp. 1645-1653 ◽  
Author(s):  
Jörn Müller ◽  
Petra Escarpa Gaede ◽  
Ke Qiao

Reactions of [Cp*IrCl2]2 (Cp*=η3-C5Me5) with [MgC4H6·2 THF]n at low temperature give [Cp*Ir(η4-C4H6)] together with [Cp*Ir(η3-C4H7)R] compounds, the latter being formed via C-H activation of solvent molecules RH (RH = benzene, toluene, anisole, thiophene, furane, N-methylpyrrole, pentane, cyclohexane. THF). In the case of pyrrole, C-N -activation occurs. The ratio of syn and anti isomers of the 1-methylallyl complexes as well as the sites of C-H activation of RH were investigated by NMR spectrometry. An enantiomorphous crystal of [Cp*Ir(η3-C4H7)C6Hs] was characterized by X-ray diffraction analysis which reveals trigonal planar coordination at the Ir atom and an exo, syn conformation of the 1-methylallyl ligand. A mechanism of the reaction which involves 16-electron intermediates is discussed. The corresponding system [Cp*RhCl2]2/butadienemagnesium/RH gives only [Cp*Rh(η4-C4H6)], and no C-H activation is observed.


1996 ◽  
Vol 52 (3) ◽  
pp. 440-449 ◽  
Author(s):  
R. Hammond ◽  
J. Barbier

Sodium cobalt phosphate, NaCoPO4, occurs as two different polymorphs which transform reversibly at 998 K. The crystal structures of both polymorphs have been determined by single-crystal X-ray diffraction. The low-temperature form α-NaCoPO4 crystallizes in the space group Pnma with cell parameters: a = 8.871 (3), b = 6.780 (3), c = 5.023 (1) Å, and Z = 4 [wR(F 2) = 0.0653 for all 945 independent reflections]. The α-phase contains octahedrally coordinated Co and Na atoms and tetrahedrally coordinated P atoms, and is isostructural with maracite, NaMnPO4. The structure of high-temperature β-NaCoPO4 is hexagonal with space group P65 and cell parameters: a = 10.166 (1), c = 23.881 (5) Å, and Z = 24 [wR(F 2) = 0.0867 for 4343 unique reflections]. The β-phase belongs to the large family of stuffed tridymites, with the P and Co atoms occupying tetrahedral sites and the Na atoms located in the cavities of the tetrahedral framework. The long c axis corresponds to a 3 × superstructure of the basic tridymite framework (c ≃ 8 Å) and is caused by the displacement of the Na atoms, tetrahedral tilts and strong distortions of the CoO4 tetrahedra. A bond-valence analysis of these phases reveals that the polymorphism in NaCoPO4 is due in part to over-/underbonding of the Na atom in the low-/high-temperature structures, respectively.


2011 ◽  
Vol 84-85 ◽  
pp. 662-666 ◽  
Author(s):  
Zeng Ping Zhang ◽  
Yong Wen ◽  
Jian Zhong Pei ◽  
Shuan Fa Chen

Montmorillonite (MMT) modified asphalts are prepared by melt blending with the help of high-speed shear mixer. The dispersion of MMT layers in the asphalt matrix are characterized by X-ray diffraction (XRD). The effect of different contents of MMT on physical properties of the base asphalt is studied. These properties include penetration, softening point and ductility. The results indicate that MMT/asphalt may form a nanocomposite structure with MMT layers intercalated by the asphalt molecules. MMT can improve the high temperature performance and temperature sensitivity of the base asphalt. And it can slightly reduce the low temperature performances of matrix asphalt. It is found that low temperature performances, high temperature performance and temperature sensitivity of the modified system achieved balance when the content of MMT is 4 wt%.


1999 ◽  
Vol 14 (3) ◽  
pp. 231-233 ◽  
Author(s):  
Raj P. Singh ◽  
Michael J. Miller ◽  
Jeffrey N. Dann

(Na0.6H0.4)(Ta0.7Nb0.3)O3 was synthesized by heating a tantalum/niobium scale containing two sodium tantalate/niobate phases :Na14(Ta0.7Nb0.3)12O37·31H2O and NaH2Ta0.7Nb0.3O4. Powder X-ray diffraction data for (Na0.6H0.4)(Ta0.7Nb0.3)O3 indicated it to be a cubic perovskite (ABO3/ReO3 type structure) with unit cell a0=3.894 Å. The compound is analogous to the mineral lueshite (NaNbO3), and to the high temperature forms of NaTaO3 and NaNbO3. Powder diffraction data for (Na0.6H0.4)(Ta0.7Nb0.3)O3 will be useful in the analysis of synthetic tantalum/niobium concentrates.


1992 ◽  
Vol 60 (21) ◽  
pp. 2692-2694 ◽  
Author(s):  
T. Hasegawa ◽  
T. Kitamura ◽  
H. Kobayashi ◽  
H. Kumakura ◽  
H. Kitaguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document