Path Generation for Robot Polishing System Based on Cutter Location Data

2014 ◽  
Vol 902 ◽  
pp. 250-253
Author(s):  
Feng Yun Lin

Polishing work is in most cases made by manual labour. It is an extremely laborious operation which demands a lot of time, so it is very expensive. This study aims at rationalizing such difficult polishing work by introducing a robot and CAD technology. Instead of the conventional complicated teaching process. A trajectory generator based on cutter location data generated from the postprocessor of a CAD system is discussed. To realize the smooth interpolation of the tool orientations, a quaternion interpolation algorithm between two CL data is proposed.

Author(s):  
Cheng-Ming Chuang ◽  
Chun-Yan Chen ◽  
Hong-Tzong Yau

Abstract NC tool-path is usually generated by sweeping parametric surfaces of a CAD model. In modern design, free-form or sculptured surfaces are increasingly popular in representing complex geometry for aesthetic or functional purposes. Traditionally, a prototype is realized by machining the workpiece using the NC codes generated from a CAD model. The machined part can then be compared with the CAD model by measurement using a coordinate measuring machine. Presented in this paper is a reverse engineering approach to generating interference free tool-paths in three-axis machining from scanned data of physical models. There are two steps in this procedure. First, a physical model is scanned by 3D digitizers and multiple data sets are obtained of the complex model. A surface registration algorithm is proposed to align and integrate those data to construct a complete 3D data set. We use least distance method to determine the connecting sequence of the neighboring points, such that the scanned data are converted into triangular polygons. Tool-paths are then generated from the tessellated surfaces. Using the Z-map method we calculate interference-free cutter-location data relative to the vertex, edges and planes of those triangles. The algorithms for tool-path generation are usually different for cutters of various geometry. Some algorithms found in literature require complex numerical calculations and are time consuming. In this paper, an efficient algorithm is developed to calculate interference-free cutter-location data by easy geometric reasoning without complex computation. The robust method is suitable for generally used cutters such as ball, flat and filleted endmills and the time taken to obtain full tool-paths of compound surfaces is short. Some real applications are presented to validate the proposed approach.


2013 ◽  
Vol 404 ◽  
pp. 694-698
Author(s):  
Feng Yun Lin

Polishing, a kind of finishing process done after machining is necessary to obtain a good surface roughness as well as the form accuracy. In this paper, instead of manual polishing work, a robotic polishing system is introduced. A trajectory generator needed for generating the robot polishing path are taken from the cutter location data generated from the postprocessor of a CAD system. Using the trajectory generator, the present polishing robot doesnt need the conventional complicated teaching process. Position interpolation algorithm between two CL data is proposed, and the robot control commands can also be generated using an industrial robot Motoman sv3.


2010 ◽  
Vol 166-167 ◽  
pp. 161-166
Author(s):  
Ionut Dinulescu ◽  
Dorin Popescu ◽  
Mircea Nitulescu ◽  
Alice Predescu

Recent advances in the domains of social and life artificial intelligence have constituted the basis for a new discipline that studies cooperation in multi-robot systems and its utility in applications where some tasks cannot be carried out by a single robot. This paper introduces a trajectory generator which is used for determination of the most appropriate trajectory which a robot needs to track in order to perform different tasks specific to cooperative robots, such as moving in a given formation or pushing an object to a given destination. Different algorithms are described in this paper, starting from simple polyline and circular paths to complex Bezier trajectories. Simulation results of the proposed path generation system are also provided, along with the description of its implementation on real mobile robots. An implementation of real robots is also presented in this paper.


2013 ◽  
Vol 274 ◽  
pp. 121-123 ◽  
Author(s):  
Cun Guang Yu

NURBS curve fitting is used for tool path planning for sculptured surface NC machining. The cutter location data is parameterized by equal chord arc length parameterization, and Centripetal Parameterization is improved. It is not only more approach to curves nature equation in theory, but also closer to the interpolated curves in actual fitting. It is directly to reflect the curvature of curves of cutter location in NC machining.


2010 ◽  
Vol 15 (1) ◽  
pp. 106-110
Author(s):  
Fusaomi Nagata ◽  
Takanori Mizobuchi ◽  
Shintaro Tani ◽  
Tetsuo Hase ◽  
Zenku Haga ◽  
...  

Author(s):  
Liping Wang ◽  
Weitao Li ◽  
Hao Si ◽  
Xing Yuan ◽  
Yuzhe Liu

Geometric deviation, defined as the distance between the designed surface and the machined surface, is an important component of machining errors in five-axis flank milling of the S-shaped test piece. Since the interpolated toolpath in practical machining process is the approximation of the theoretical toolpath, the geometric deviation caused by the interpolated toolpath appears. To overcome this problem, a novel geometric deviation reduction method is suggested in this study. First, the features of the S-shaped test piece are analyzed. Second, the theoretical toolpath is generated according to the designed surface and the cutter location data is obtained by discretizing the theoretical toolpath. The linear interpolation of the cutter location data is carried out to obtain the interpolated toolpath. Then, the geometric deviation is modeled by calculating the Hausdorff distance between the tool axis trajectory surface based on the interpolated toolpath and the offset surface of the designed surface. Finally, the geometric deviation is reduced by optimizing the cutter location data without inserting more cutter location points. The machining experiment is conducted to verify the effectiveness of the proposed method. The experimental results agree with the simulation results, and both of them indicate the geometric deviation on the machined surface reduces after optimization.


2013 ◽  
Vol 364 ◽  
pp. 386-390
Author(s):  
Chun Hui Yin ◽  
Huai Jing Jing ◽  
Nuo Di Huang ◽  
Fei Ren

Postprocess capable of converting the cutter location data to machine control data is an important interface between the NC programming design and manufacture.Due to the fact that current research on multi-axis postprocess methods mostly deals with machine tool configurations whose linear and rotational movements are orthogonal, an efficient postprocess algorithm for the five-axis machine with a tilting head is presented in this paper.DMU 80P which is a five-axis machine with a tilting head is selected as an example.Its mechanism model is proposed in this paper according to the mechanism theory.The kinematics model is established using coordinate transformation,and the solution of this model is discussed.Based on these,a window-based post-processor with multi-choice function was developed by VS2010 language.Through the verification by the commercial solid cutting software VERICUT,the feasibility of the algorithm proposed is demonstrated.At last,a real impeller cutting experiment has been conducted and the result further verifies the correctness of the algorithm.


2011 ◽  
Vol 189-193 ◽  
pp. 801-804 ◽  
Author(s):  
Yu Xia Zhao ◽  
Jie Jian Di ◽  
De Wen Gao

An impeller is the core of aviation engine components, the processing quality has a decisive impact on the performance of the engine. An impeller is also one of the most important basic components of centrifugal compressor. When a three-axis CNC machining centre is used for producing an impeller, great difficulties, i.e. collisions between the cutting tool and the impeller, can occur. As the surface is normally twisted in design to achieve the required performance, it can cause overcut and collision problems during machining. To solve these problems, an integrated five-axis machining approach for a centrifugal impeller by combining related machining technologies is developed. As a result, Cutter Location data based on the geometry model of blade and hub of the impeller are generated. Finally, the Cutter Location data is verified through software simulation. The results prove that the machining methodology adopted is useful and efficient.


Sign in / Sign up

Export Citation Format

Share Document