Generation of collision-free cutter location data in five-axis milling using the potential energy method

1997 ◽  
Vol 13 (8) ◽  
pp. 523-529 ◽  
Author(s):  
Inhaeng Cho ◽  
Kunwoo Lee ◽  
Jongwon Kim
Author(s):  
Liping Wang ◽  
Weitao Li ◽  
Hao Si ◽  
Xing Yuan ◽  
Yuzhe Liu

Geometric deviation, defined as the distance between the designed surface and the machined surface, is an important component of machining errors in five-axis flank milling of the S-shaped test piece. Since the interpolated toolpath in practical machining process is the approximation of the theoretical toolpath, the geometric deviation caused by the interpolated toolpath appears. To overcome this problem, a novel geometric deviation reduction method is suggested in this study. First, the features of the S-shaped test piece are analyzed. Second, the theoretical toolpath is generated according to the designed surface and the cutter location data is obtained by discretizing the theoretical toolpath. The linear interpolation of the cutter location data is carried out to obtain the interpolated toolpath. Then, the geometric deviation is modeled by calculating the Hausdorff distance between the tool axis trajectory surface based on the interpolated toolpath and the offset surface of the designed surface. Finally, the geometric deviation is reduced by optimizing the cutter location data without inserting more cutter location points. The machining experiment is conducted to verify the effectiveness of the proposed method. The experimental results agree with the simulation results, and both of them indicate the geometric deviation on the machined surface reduces after optimization.


2013 ◽  
Vol 364 ◽  
pp. 386-390
Author(s):  
Chun Hui Yin ◽  
Huai Jing Jing ◽  
Nuo Di Huang ◽  
Fei Ren

Postprocess capable of converting the cutter location data to machine control data is an important interface between the NC programming design and manufacture.Due to the fact that current research on multi-axis postprocess methods mostly deals with machine tool configurations whose linear and rotational movements are orthogonal, an efficient postprocess algorithm for the five-axis machine with a tilting head is presented in this paper.DMU 80P which is a five-axis machine with a tilting head is selected as an example.Its mechanism model is proposed in this paper according to the mechanism theory.The kinematics model is established using coordinate transformation,and the solution of this model is discussed.Based on these,a window-based post-processor with multi-choice function was developed by VS2010 language.Through the verification by the commercial solid cutting software VERICUT,the feasibility of the algorithm proposed is demonstrated.At last,a real impeller cutting experiment has been conducted and the result further verifies the correctness of the algorithm.


2011 ◽  
Vol 189-193 ◽  
pp. 801-804 ◽  
Author(s):  
Yu Xia Zhao ◽  
Jie Jian Di ◽  
De Wen Gao

An impeller is the core of aviation engine components, the processing quality has a decisive impact on the performance of the engine. An impeller is also one of the most important basic components of centrifugal compressor. When a three-axis CNC machining centre is used for producing an impeller, great difficulties, i.e. collisions between the cutting tool and the impeller, can occur. As the surface is normally twisted in design to achieve the required performance, it can cause overcut and collision problems during machining. To solve these problems, an integrated five-axis machining approach for a centrifugal impeller by combining related machining technologies is developed. As a result, Cutter Location data based on the geometry model of blade and hub of the impeller are generated. Finally, the Cutter Location data is verified through software simulation. The results prove that the machining methodology adopted is useful and efficient.


Author(s):  
Der Min Tsay ◽  
Wei Feng Yan

A simple, yet useful procedure is developed to generate tool paths with global interference checking for five-axis machining of turbomachinery components with complex geometries. Based on the projected distance between the surface data and the cutter-axis of a cylindrical ball-end mill, interference between the surface of a workpiece and the cutter can be detected. Given the cutter contact points of the surface and the cutter’s size, it can produce the cutter location data without incurring interference through relatively rotating and tilting the workpiece. Applications of the developed approach to five-axis machining of centrifugal compressor impellers with thirteen and fifteen blades are illustrated to demonstrate the usefulness and reliability of the procedure.


2012 ◽  
Vol 622-623 ◽  
pp. 525-530
Author(s):  
Tran Duc Tang

This paper presents a postprocessor for five-axis milling machine that capable of converting CL (cutter location) data to machine control data (NC program). The proposed postprocessor method is based on inverse kinematics transformation and postprocessor module is programmed in Visual Basic language. The Deckel Maho DMU 50 eVoluion five-axis machine with two rotary axes (B and C) on the table is modeled and verified in software VERICUT® to validate the NC data generated by proposed postprocessor.


2018 ◽  
Vol 12 (7) ◽  
pp. JAMDSM0122-JAMDSM0122 ◽  
Author(s):  
Chaosheng SONG ◽  
Siwei ZHOU ◽  
Caichao ZHU ◽  
Xingyu YANG ◽  
Zufeng LI ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Jie Liu ◽  
Chengye Wang ◽  
Wenchao Wu

In order to study the influence of pitting on meshing stiffness, the normal distribution function is used to simulate the pitting location of pitting gear, and the potential energy method is used to analyze the influence of pitting on meshing stiffness. At the same time, the meshing stiffness of pitting gears with different degrees is analyzed by finite element method, and the validity of the calculation results with potential energy method is verified. On the basis of meshing stiffness, the dynamic model of gear system is established, and the vibration response of pitting gear system with different degrees is analyzed. The results show that with the increase of pitting area, the meshing stiffness decreases; the closer the meshing area of the driving wheel is to the pitting line, the more the meshing stiffness decreases, resulting in the intensification of vibration response and periodic impact; and in the time history diagram, there is a small spurious frequencies near the meshing frequency; in the phase diagrams and the Poincare diagram, trajectory and discrete point aggregation area is gradually increased.


Sign in / Sign up

Export Citation Format

Share Document