slip motion
Recently Published Documents


TOTAL DOCUMENTS

342
(FIVE YEARS 41)

H-INDEX

41
(FIVE YEARS 3)

2022 ◽  
Vol 164 ◽  
pp. 108226
Author(s):  
Saeed Gheisari Hasnijeh ◽  
Hossein Karimpour ◽  
Mehrdad Poursina

2021 ◽  
Vol 57 ◽  
pp. 275-304
Author(s):  
Morgan E. Snyder ◽  
John W. F. Waldron

The Bay St. George sub-basin of SW Newfoundland, part of the larger late Paleozoic Maritimes basin, formed under the influence of strike-slip faulting and the movement of evaporites. New stratigraphic correlations between Newfoundland and other late Paleozoic sub-basins illustrate the effects of both basement and salt movement. Coastal outcrops show complex combinations of synsedimentary, salt-related, and tectonic structures. Map relationships and dramatic thickness contrasts in the Tournaisian Anguille Group indicate that a large, concealed, NE–striking normal growth fault (Ship Cove fault) controlled sedimentation; the exposed Snakes Bight fault originated as a hanging-wall splay. Structures formed during, or soon after deposition include soft-sediment folds, boudins, clastic dykes, and millimetre-scale diapiric bulb structures, formed by overpressuring and liquidization of sediment. These suggest that the sub-basin was tectonically active throughout deposition. Evaporite-related deformation is recorded in the Visean Codroy Group and overlying strata. Comparisons between outcrop and subsurface suggests that significant amounts of evaporite were removed from exposed sections by halokinesis and solution. Complex outcrop relationships indicate salt welds, and suggest that units of the upper Codroy and overlying Barachois groups represent fills of minibasins that subsided into thick evaporites. Field relationships suggest tectonic inversion deposition related to E-W dextral strike slip motion that affected the entire Maritimes basin in the Serpukhovian, producing reverse-sense offsets and contractional folds. Many of the structures in the Bay St. George sub-basin, previously interpreted as post-depositional and purely tectonic, were formed by deformation of unlithified sediment and ductile evaporites during basin development.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jun Liu ◽  
Dong Jia ◽  
Hongwei Yin ◽  
Li Shen ◽  
Xiaogen Fan ◽  
...  

The main formation of the Yinggehai Basin has been related to the rotation of the Indochina block, resulting in large-scale strike-slip motion along the Red River Fault Zone (RRFZ). Transrotational tectonics played a key role in the evolution of the Yinggehai Basin. In this study, we present analog experiments with a preexisting basal velocity discontinuity boundary, rotation of crustal blocks concerning vertical axes, and syntectonic sedimentations to evaluate how the transrotational tectonics controls the evolutionary process of the Yinggehai Basin. Particle image velocimetry (PIV) was used to monitor the deformation of the model surface. Four successive poles of rotation have been applied to the model. The basin evolution underwent two phases. An early phase of deformation is characterized by the nucleation of the main internal faults above the velocity discontinuity boundary and segmented en echelon border fault systems. In the early phase, the internal and boundary faults mainly accommodated large-scale strike-slip displacement. During progressive extension, the main internal faults deactivated, and tectonic activity is localized along the boundary and secondary internal faults in the late phase. The boundary faults in the rotating block play a dominant role in the widening and deepening of the rift zone at an accelerating rate. The model surface morphology shows similarities to the Yinggehai Basin, which is wide in the middle and converges toward the northwest and southeast. In addition, experimental profiles have been compared with seismic profiles in the Yinggehai Basin. The model results also indicate that the rotation of the Indochina block combines with strong strike-slip motion. The similarities between modeling and nature provide support for ∼250 km sinistral displacement along the RRFZ between ∼32 and ∼21 Ma.


2021 ◽  
Author(s):  
Feng Shen ◽  
Zong-He Li ◽  
Ming-Zhu Ai ◽  
Sen Xue ◽  
Min Xu ◽  
...  

Abstract Particle motion in viscous fluids is a common and fascinating phenomenon. The hydrodynamics of a trapped finite-size particle recirculating along a stable orbit within a microvortex is still puzzling. Herein we report experimental observations of the orbiting motion of a finite-size particle in a vortex confined in a microcavity. The orbiting particle keeps crossing the streamlines with acute changes in velocity along the orbit, which can be divided into three stages: acceleration, swerving, and following. By examining the relationship between particle orbit and vortex streamlines, we uncover a particle slingshot effect and slip motion. Particle motion and vortex structure in three dimensions are also studied, revealing many new fascinating particle motion phenomena. The results provide new insights into the physics of particle motion in vortices.


2021 ◽  
pp. 107754632110096
Author(s):  
Mohammad Mayyas

This study presents model and analysis of a robust one-dimensional stick–slip transportation of an object, on dry contact with an oscillating platform suspended by nonlinear leaf spring. The oscillating platform is designed and modeled such that the elastic spring constant is direction dependent. A recursive analytical solution algorithm is proposed to solve nonlinear system dynamics. The system and the input force parameters are both investigated with goal to optimize the average velocity of the object. Both experimental and analytical results showed that the stick–slip motion is highly nonlinear and sensitive to the system and input force parameters. Moreover, the simulations showed that it is feasible to design a platform with robust sets of parameters (natural frequencies) and further use the input force parameters (amplitude and driving frequency) to tune for desired average velocity, under given dry friction conditions.


Author(s):  
Kate Brooks ◽  
Phil J.A. McCausland ◽  
John W.F. Waldron

The ca. 355 Ma Fountain Lake Group, in the Cobequid Highlands of Nova Scotia, is part of the transtensional basin fill which formed during dextral strike-slip motion between Avalonia and the Meguma terranes following the Acadian Orogeny. Paleomagnetic analysis of the Fountain Lake Group offers a paleolatitude estimate for the Laurentian accretionary margin in the Early Carboniferous and locality-specific paleomagnetic directions which indicate clockwise-sense block rotations during dextral strike-slip motion along the Cobequid Fault zone. Stepwise demagnetization of 142 specimens from 20 sites in three Fountain Lake Group localities across the Cobequid Highlands (Squally Point, West Moose River, and Wentworth exposures) reveals remanence consisting of an easily removed component of probable recent origin, and more persistent components carried by magnetite and hematite, which in petrographic and electron beam analysis appear to be of primary igneous and volcanic oxidation origins, respectively. Sites from all three localities carry stable characteristic remanent magnetization (ChRM) directions that assume similar moderate downward inclinations when tilt-corrected. A Block Rotation Fisher analysis inclination-only fold test demonstrated best agreement at 90% unfolding, showing that remanence acquisition pre-dates Alleghenian deformation in the Late Carboniferous and is most likely of primary 355 Ma age. Paleomagnetic results for the Squally Point, West Moose River and Wentworth localities show relative rotations between the blocks that are variously clockwise-rotated compared with a Laurentia cratonic reference frame. Inclinations at all three localities imply a subtropics paleolatitude for the margin (at Squally Point, 27.2° ± 9.4°; N= 7 sites), directly supporting the depicted location of Laurentia and its Appalachian accretionary margin in most Devonian to Early Carboniferous reconstructions.


2021 ◽  
pp. 107754632110004
Author(s):  
Lu Qian ◽  
Xingwei Zhao

Creep groan is a low-frequency vibration, which is produced by the stick–slip motion from the pad–disc contact in the brake. Friction plays a key role in generating the stick–slip motion. However, directly measuring the friction force in an actual brake system is difficult. Therefore, force estimation methods are proposed to estimate the friction force based on unknown input observers. A proportional integral observer is applied to estimate the friction force amplitude from the torsional angle of the driven shaft. An approximate H2 observer is designed to distinguish the stick region and slip region from the acceleration of the pad. Different from modeling methods, designing observers do not introduce modeling deviation and have a relatively low requirement on parameter identification. In addition, the observer methods can extract more detailed information of friction force than modeling methods. The observed friction force can be considered an index to evaluate the severity of the brake defect. The performance and effectiveness of the proposed methods are confirmed by experiments on a brake test rig.


Sign in / Sign up

Export Citation Format

Share Document