Limit Cycle Flutter Analysis of a High-Aspect-Ratio Wing with an External Store

2014 ◽  
Vol 912-914 ◽  
pp. 907-910 ◽  
Author(s):  
Jun Xu ◽  
Xiao Ping Ma

Limit cycle flutter analysis of a high-aspect-ratiowing with an external store is presented. The concentrated store mass iscombined into the governing equations which are obtained using the extendedHamilton’s principle. The high-aspect-ratio wing structural model, which alsoconsiders the in-plane bending motion, is used. Three possible nonlinearitiesare considered including structural nonlinearities, aerodynamic nonlinearities,and store nonlinearities. Time simulation and bifurcation diagrams areperformed to analysis systems with three nonlinearities.

Author(s):  
F. Bakhtiari-Nejad ◽  
A. H. Modarres ◽  
E. H. Dowell ◽  
H. Shahverdi

In this study, analysis and results of linear and nonlinear aeroelastic of a cantilever beam subjected to the airflow as a model of a high aspect ratio wing are presented. A third-order nonlinear beam model is used as structural model to take into account the effects of geometric structural nonlinearities. In order to model aerodynamic loads, Wagner state-space model has been used. Galerkin method is implemented to solve dynamic perturbation equations about a nonlinear static equilibrium state. The small perturbation flutter boundary is determined by these perturbation equations. The effect of geometric structural nonlinearity of the beam model on the flutter behavior is significant. As it is observed the system’s response to upper speed of flutter goes to limit cycle oscillations and also the oscillations lose periodicity and become chaotic.


2011 ◽  
Vol 110-116 ◽  
pp. 4297-4306 ◽  
Author(s):  
Keivan Eskandary ◽  
Morteza Dardel ◽  
Mohammad Hadi Pashaei ◽  
Abdol Majid Kani

In this study aeroelastic characteristics of long high aspect ratio wing models with structural nonlinearities in quasi-steady aerodynamics flows are investigated. The studied wing model is a cantilever wing with double bending and torsional vibrations and with large deflection ability in according to Dowell-Hodges wing model. This wing model is valid for long, straight and thin homogeneous isotropic beams. Aerodynamics model is based on quasi-steady aerodynamic which is valid for aerodynamic flows in low velocity and without wake, viscosity and compressibility effects. The effect of different parameters such as mass ratios and stiffness ratios on flutter and divergence velocities and limit cycle oscillation amplitudes are carefully studied.


2012 ◽  
Vol 189 ◽  
pp. 306-311 ◽  
Author(s):  
Qing Guo ◽  
Bi Feng Song

High altitude and long endurance (HALE) vehicle always adopt straight or swept configuration, which leads to the problem that the wings of UAV have high aspect ratio and are very flexible. This kind of flexible wing exhibits large deformation when aerodynamic forces are loaded on them and the structural nonlinearity should be considered. So the dynamic and flutter characteristics will be changed. In the engineering applications, the effects of structural geometric nonlinearities on the air vehicle design are the most concerns of aeroelasticity before a systematic flutter analysis for the air vehicle. because the solution for nonlinear flutter speed based on the CFD-CSD method is complex and time consuming. In this paper, we propose a simple and efficient approach that can analyze the effect of structural geometric nonlinearities on the flutter characteristics of high aspect ratio wing quickly. And a straight wing and a straight-swept wing are analyzed to verify the feasibility and efficiency of the proposed method. It is found that the effect of structural geometric nonlinearities has a strong effect on the flutter characteristic of the straight wing, but is weak on the straight-swept wing. And finally the impact of swept angle on the dynamic and flutter characteristics of straight-swept wing is also discussed.


2011 ◽  
Vol 66-68 ◽  
pp. 1732-1737
Author(s):  
Li Lu ◽  
Yi Ren Yang ◽  
Chen Guang Fan ◽  
Ming Lu Zhang

The limit cycle flutter of a plate-type structure with dissymmetrical subsection linear stiffness in incompressible viscous flow was studied. Galerkin Method was used to get the differential equations of system. The equivalent linearization concept was performed to predict the ranges of limit cycle flutter velocities. The flutter borderline map was used to analyze the the stability of limit cycle flutter. By numerical integrating, the velocities of convergence, flutter and instability were obtained. The theoretical results agree well with the results of numerical integration.


AIAA Journal ◽  
2012 ◽  
Vol 50 (5) ◽  
pp. 1019-1028 ◽  
Author(s):  
Weiwei Zhang ◽  
Bobin Wang ◽  
Zhengyin Ye ◽  
Jingge Quan

2001 ◽  
Vol 15 (1) ◽  
pp. 107-132 ◽  
Author(s):  
M.J. PATIL ◽  
D.H. HODGES ◽  
C.E.S. CESNIK

2014 ◽  
Vol 351 (8) ◽  
pp. 4230-4250 ◽  
Author(s):  
A.V. Balakrishnan ◽  
Amjad M. Tuffaha ◽  
Iylene Patino ◽  
Oleg Melnikov

Sign in / Sign up

Export Citation Format

Share Document