Technology of Finite Element Analysis for Roll Forming Process

2014 ◽  
Vol 941-944 ◽  
pp. 1832-1835
Author(s):  
Xue Feng Peng ◽  
Jing Tao Han ◽  
Jing Liu ◽  
Pei Jie Yan

With deepening of roll forming technology and the proficiency of computer aided design and finite element Analysis (FEA) technology, it is widely noted that using the technology of FEA to simulate the roll forming process. In this paper, the current status of finite element simulation for roll forming process at home and abroad is summarized. And the finite element theories of deformation zone in roll forming process are analyzed. The new issues on roll forming process faced by finite element simulation, including advanced high strength steel (AHSS), multipass heterosexual cross section and coupling thermo-mechanical-metallurgical (TMM) coupling etc. are discussed. Moreover, the future trends of numerical simulation about the roll forming process are forecasted.

2014 ◽  
Vol 2014.22 (0) ◽  
pp. 163-164
Author(s):  
Shintaro AKANUMA ◽  
Tomoya SUZUKI ◽  
Hayato ASO ◽  
Bunkyo KYO ◽  
Shinichi NISHIDA ◽  
...  

Author(s):  
Sachin Kumar Nikam ◽  
◽  
Sandeep Jaiswal ◽  

This paper deals with experimental and finite element analysis of the stretch flanging process using AA- 5052 sheets of 0.5 mm thick. A parametrical study has been done through finite element simulation to inspect the influence of procedural parametrical properties on maximum thinning (%) within the stretch flanging process. The influence of preliminary flange length of sheet metal blank, punch die clearance, and width was examined on the maximum thinning (%). An explicit dynamic finite element method was utilized using the finite element commercial package ABAQUS. Strain measurement was done after conducting stretch flanging tests. A Mesh convergence examination was carried out to ascertain the maximum percentage accuracy in FEM model. It is found through finite element simulation that the width of sheet metal blanks has a greater impact on the maximum percentage of thinning as compared to preliminary flange length, and clearance of the punch dies.


2018 ◽  
Vol 251 ◽  
pp. 04056 ◽  
Author(s):  
Zelimkhan Khakiev ◽  
Alexander Kruglikov ◽  
Georgy Lazorenko ◽  
Anton Kasprzhitskii ◽  
Yakov Ermolov ◽  
...  

Analysis of mechanical behavior of ballast shoulder of railway track reinforced by polyurethane binding agent has been performed by the method of finite-element simulation Limitation of the model of linear-elastic properties of geocomposite has been displayed. Dependence of elasticity modulus of geocomposite on deformation value has been suggested. Influence of penetration depth of polyurethane binding agent on behavior of railway track construction under different train loads has been studied.


2020 ◽  
Author(s):  
Ans Al Rashid ◽  
Ramsha Imran ◽  
Muhammad Yasir Khalid

Abstract The mechanical behavior of materials plays a vital role in the structural performance of designed structures. Therefore, significant resources are devoted globally towards experimental characterization of material behavior, especially for the experiments requiring particular protocols. Contrary, finite element analysis tools have made a substantial contribution to the design of structural elements, which could conserve a significant amount of resources and material wastage. Evaluation of fatigue life of materials is necessary to predict the life expectancy of the structures precisely, and opening stress levels under fatigue loading contributes towards this evaluation. Railways serve as freight and passenger carrier transportation modes. The railway axles contribute as the primary load-carrying element; therefore, the design of railway axles and the study of their mechanical behavior under repeated loading is vital. In this study, the authors present a finite element simulation technique to evaluate the opening stress levels for two structural steels subjected to low cycle fatigue. The finite element analysis (FEA) model was designed and validated following the simulation of fatigue crack propagation under high plasticity conditions. Numerical simulation results were compared with the experimental results obtained earlier through the digital image correlation (DIC) technique. To conclude, FEA could be a useful tool to predict crack closure phenomena and, ultimately, the fatigue life of components. However, researchers need to establish more sophisticated numerical tools for more precise results in case of high plasticity conditions near the crack tip.


2018 ◽  
Vol 920 ◽  
pp. 10-15
Author(s):  
Kuang-Jau Fann ◽  
Che Yi Lin ◽  
Ying Ju Chen

Because of relative low investment cost on the installation of equipment and extensive product quality with other advantages, roll forming process has been broadly applied to produce profiles from steel strip bands and has gradually replaced aluminum profiles made by hot extrusion. Moreover, a lightweight design is the trend for reducing carbon emissions and waste. Therefore, a lightweight design of structures with local thinning used the roll forming production will make metal profiles more market competitiveness. In this study, the commercial Finite Element software DEFORM is used to investigate the rolling process preparing the metal strips with local thinning feature for the subsequent roll forming process to form a lightweight metal profile. Two kinds of roll configuration are used in this study, namely symmetrical and non-symmetrical. The symmetrical rolling process has the same diameter for the upper and the lower roll, while the non-symmetrical rolling process has different diameter in both rolls. As the process parameters, the roll speed ratio between the upper and the lower roll is used for the symmetrical rolling process, while the distance between the axis of the upper and lower roll is used for the non-symmetrical rolling process. As a result, the rolled thinning feature has its sidewalls flaring outwards, so that it has a narrow bottom and a wide opening. Furthermore, it can be regarded as defect that the thickness of the rolled thinning feature is not thinned enough as required and a raising at the opening is observed. In general, increasing the roll diameter or keeping the speed of the two rolls as the same can have a better thinning result for the symmetric rolling. In the non-symmetric rolling, increasing the roll diameter can improve the thickness, but no significant effect can be found by changing the roll diameter ratio.


Sign in / Sign up

Export Citation Format

Share Document