Research Progress of Simulation on the Flow Field in Anaerobic Reactor

2014 ◽  
Vol 955-959 ◽  
pp. 2098-2101
Author(s):  
Qin Zhang ◽  
Qiang Li ◽  
Jia Tang

The flow field in anaerobic reactor is very complex, but it has been given wide attention because of its important impact to wastewater treatment effect. It is often studied by numerical simulation. The paper explored the research progress of simulation on the flow field in anaerobic reactor by the summary of development of anaerobic reactor and principle and characteristics of computational fluid dynamics simulation and introduction of study and application status on numerical simulation. And then it gave its opinion on the development of simulation on the flow field in anaerobic reactor in future.

2012 ◽  
Vol 516-517 ◽  
pp. 1133-1138 ◽  
Author(s):  
Yi Tang ◽  
Jing Xie ◽  
Jin Feng Wang ◽  
Chen Miao ◽  
Yi Zheng

The quantity of the cold store in our country has been rapidly rising since the 1990s, however, the flow field in the cold store is difficult to obtain accurately by experiments. With reference to the experiences in previous numerical simulations in this paper, CFD is used for analyzing two forms of return air in the cold store with the Finite Volume Methods and the SIMPLE Revised. As a result, Combining with the non-equilibrium wall function, it is found that taking the way of return air on both sides of the fan is more reasonable and the cooling consumption of the empty cold store can be saved before the products enter the cold store. Furthermore, the numerical simulation results can provide reference for choosing fans in the small cold store.


Author(s):  
Shuguang Zuo ◽  
Chaofeng Xie ◽  
Xudong Wu ◽  
Yuejiao Li ◽  
Kaijun Wei

This study aims at minimizing the aerodynamic noise generated by claw pole alternator used in vehicles. In this paper, an effective and efficient hybrid test-analysis engineering approach has been proposed to predict and optimize acoustic performance of claw pole alternator. First, an experimental analysis was performed to predict the main components of the aerodynamic noise generated by the claw pole alternator. Then a hybrid approach was proposed to calculate the aerodynamic noise of the alternator. A computational fluid dynamics model of the claw pole alternator was developed for calculating the flow-field of the alternator. The pressure fluctuation in the flow field was analyzed to validate the computational fluid dynamics simulation. After the computational fluid dynamics simulation, the far-field aerodynamic noise generated by the flow field was calculated by adopting the acoustic finite element method. The accuracy and feasibility of the acoustic finite element model were validated with the experimental data. After the validation, the effects of the cooling fan parameters on the aerodynamic noise of the alternator were discussed and analyzed. According to the sound source information and the generation mechanism of the aerodynamic noise, the blade spacing angle of the cooling fan was optimized by establishing a theoretical model. The blade chord length of the cooling fan, the blade installation angle of the cooling fan and the tilt angle of the grille on end cap were optimized by structuring different surrogate models. After the optimizations, a significant reduction in the noise level of the claw pole alternator was found by the finite element method simulation. The overall sound power level has been decreased by about 6 dB (A).


Sign in / Sign up

Export Citation Format

Share Document