A Cell Balancing System Based on Charge Shuttling Method

2014 ◽  
Vol 986-987 ◽  
pp. 1892-1896
Author(s):  
Yu Wei Zhu ◽  
Bing Shi

As one of the most essential part in a battery management system for a lithium battery, cell balancing determine its performance and lifetime. A new “flying capacitor” method is presented in this paper. Where, a clock-switched circuit changer matrix makes the charges flow from the high-voltage cells to the low-voltage cells. Some super-capacitors buffer the charge and redistribute energy of the cells in the battery. The implementation is also low-cost and its design period is short. The result shows that the method is feasible.

Author(s):  
M.S. Yusof ◽  
S.F. Toha ◽  
N.A Kamisan ◽  
N.N.W.N. Hashim ◽  
M. A. Abdullah

2021 ◽  
Vol 2 (1) ◽  
pp. 24-36
Author(s):  
Muhammad Fikri Ardiansyah ◽  
Adha Imam Cahyadi ◽  
Oyas Wahyunggoro

Battery management system (BMS) has become an important research topic following the trend and development of the electric vehicle. Although research on Active Cell Balancing, SOC, and current estimation has been carried out, the previous work mostly focused on comparing and developing methods. In this research, we demonstrate the process of designing BMS hardware using a low-cost microcontroller and without using a current sensor. The SOC simulation results produce an RMSE of 0.0832% for the 100% -10% SOC-OCV curve, and the current estimation simulation produces an RMSE of 0.2576 A, while for testing using a 6-ohm pulse load, the RMSE error value is 0.3960 A. The Active Cell Balancing method was successfully performed in simulation with Simulink. Furthermore, our simulation and test results suggest that complex battery models and multiple SOC-OCV curves can be used for better current and OCV estimation results. Our experimental results are also useful to develop a guideline to design a microcontroller-based BMS.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Changhao Piao ◽  
Zhaoguang Wang ◽  
Ju Cao ◽  
Wei Zhang ◽  
Sheng Lu

A novel cell-balancing algorithm which was used for cell balancing of battery management system (BMS) was proposed in this paper. Cell balancing algorithm is a key technology for lithium-ion battery pack in the electric vehicle field. The distance-based outlier detection algorithm adopted two characteristic parameters (voltage and state of charge) to calculate each cell’s abnormal value and then identified the unbalanced cells. The abnormal and normal type of battery cells were acquired by online clustering strategy and bleeding circuits (R= 33 ohm) were used to balance the abnormal cells. The simulation results showed that with the proposed balancing algorithm, the usable capacity of the battery pack increased by 0.614 Ah (9.5%) compared to that without balancing.


Author(s):  
L. Rimon ◽  
Khairul Safuan Muhammad ◽  
S.I. Sulaiman ◽  
AM Omar

<span>Robustness of a battery management system (BMS) is a crucial issue especially in critical application such as medical or military. Failure of BMS will lead to more serious safety issues such as overheating, overcharging, over discharging, cell unbalance or even fire and explosion. BMS consists of plenty sensitive electronic components and connected directly to battery cell terminal. Consequently, BMS exposed to high voltage potential across the BMS terminal if a faulty cell occurs in a pack of Li-ion battery. Thus, many protection techniques have been proposed since last three decades to protect the BMS from fault such as open cell voltage fault, faulty cell, internal short circuit etc. This paper presents a review of a BMS focuses on the protection technique proposed by previous researcher. The comparison has been carried out based on circuit topology and fault detection technique</span>


Author(s):  
Yanan Wang ◽  
Junwei Tian ◽  
Haoyu Niu ◽  
Peng Wang ◽  
Xiaozhong Liao ◽  
...  

Abstract This paper has proposed a multi-resolution energy strategy for battery management system (BMS) of unmanned ground vehicles (UGVs) in farming. On the basis of “Smart Farm” definition, battery energy consumption and management have been taken into consideration during the working process and system control. A battery energy controller has been proposed for the low-cost ($1000) UGVs designed by our lab for farming usage. Moreover, three levels of energy control loops have been developed, that is, motor control, path planning, and mission arrangement. In this way, an energy-efficient UGV can prolong its working time and also decrease the cost. The three closed-loop energy strategy of BMS provides not only separate working methods for the three levels, but also a weights way to adjust the influence of three levels on the performance of the UGV in different tasks.


Author(s):  
Thiruvonasundari Duraisamy ◽  
Deepa Kaliyaperumal

The shrink in accessibility of petroleum products and increment in asset request are eventual outcomes for Electrical Vehicles (EVs). The battery has an impact on the performance of electrical vehicles, the driving range. Lithium ion (Li-ion) chemistry is extremely sensitive to overcharge and deep discharge, which can harm the battery, shortening its period of time, and even inflicting risky things. The Battery Management System (BMS) comprises of the consequent parts: management, equalization and protection. Of the three components, equalization is that the most crucial with respect to the durability of the battery framework. The ability of the full pack diminishes rapidly amid the procedure which leads to degradation of the full battery framework. This condition is extreme once the battery incorporates a more number of cells in series and frequent charging is conveyed through the battery string. The cell imbalance during charging, discharging is a major issue in battery systems used in EVs. To circumvent the cell imbalance, cell balancing is used. Cell balancing enhances battery safety and extends battery life. This paper discusses about different active balancing method to increase the life span of the battery module. Based on the comparison, the inductor based balancing method for 60V battery system is implemented in the MATLAB/Simscape environment and the results are discussed.


Sign in / Sign up

Export Citation Format

Share Document