Multi-Resolution Energy Strategy for Battery Management System of Unmanned Ground Vehicles in Agriculture

Author(s):  
Yanan Wang ◽  
Junwei Tian ◽  
Haoyu Niu ◽  
Peng Wang ◽  
Xiaozhong Liao ◽  
...  

Abstract This paper has proposed a multi-resolution energy strategy for battery management system (BMS) of unmanned ground vehicles (UGVs) in farming. On the basis of “Smart Farm” definition, battery energy consumption and management have been taken into consideration during the working process and system control. A battery energy controller has been proposed for the low-cost ($1000) UGVs designed by our lab for farming usage. Moreover, three levels of energy control loops have been developed, that is, motor control, path planning, and mission arrangement. In this way, an energy-efficient UGV can prolong its working time and also decrease the cost. The three closed-loop energy strategy of BMS provides not only separate working methods for the three levels, but also a weights way to adjust the influence of three levels on the performance of the UGV in different tasks.

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2221
Author(s):  
Omer Faruk Goksu ◽  
Ahmet Yigit Arabul ◽  
Revna Acar Vural

Lithium ion (Li-Ion) and lithium polymer (Li-Po) batteries need to be used within certain voltage/current limits. Failure to observe these limits may result in damage to the battery. In this work, we propose a low voltage battery management system (LV-BMS) that balances the processes of the battery cells in the battery pack and the activating-deactivating of cells by guaranteeing that the operation is within these limits. The system operates autonomously and provides energy from the internal battery. It has a modular structure and the software is designed to control the charging and discharging of eight battery cells at most. A STM32F103 microcontroller is used for system control. The fuzzy logic controller (FLC) is used to set the discharge voltage limit to prevent damage to the battery cells, shorten the settlement time and create a specialized design for charge control. The proposed structure enables solar panel or power supplies with different voltage values between 5 V and 8 V to be used for charging. The experimental results show there was a 42% increase in usage time and the voltage difference between the batteries was limited to a maximum of 65 mV. Moreover, the charge current settles at about 20 ms, which is a much faster response when compared to a PID controller.


2014 ◽  
Vol 986-987 ◽  
pp. 1892-1896
Author(s):  
Yu Wei Zhu ◽  
Bing Shi

As one of the most essential part in a battery management system for a lithium battery, cell balancing determine its performance and lifetime. A new “flying capacitor” method is presented in this paper. Where, a clock-switched circuit changer matrix makes the charges flow from the high-voltage cells to the low-voltage cells. Some super-capacitors buffer the charge and redistribute energy of the cells in the battery. The implementation is also low-cost and its design period is short. The result shows that the method is feasible.


2021 ◽  
Vol 2 (1) ◽  
pp. 24-36
Author(s):  
Muhammad Fikri Ardiansyah ◽  
Adha Imam Cahyadi ◽  
Oyas Wahyunggoro

Battery management system (BMS) has become an important research topic following the trend and development of the electric vehicle. Although research on Active Cell Balancing, SOC, and current estimation has been carried out, the previous work mostly focused on comparing and developing methods. In this research, we demonstrate the process of designing BMS hardware using a low-cost microcontroller and without using a current sensor. The SOC simulation results produce an RMSE of 0.0832% for the 100% -10% SOC-OCV curve, and the current estimation simulation produces an RMSE of 0.2576 A, while for testing using a 6-ohm pulse load, the RMSE error value is 0.3960 A. The Active Cell Balancing method was successfully performed in simulation with Simulink. Furthermore, our simulation and test results suggest that complex battery models and multiple SOC-OCV curves can be used for better current and OCV estimation results. Our experimental results are also useful to develop a guideline to design a microcontroller-based BMS.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7377
Author(s):  
Francesco Santoni ◽  
Alessio De Angelis ◽  
Antonio Moschitta ◽  
Paolo Carbone

Meaningful information on the internal state of a battery can be derived by measuring its impedance. Accordingly, battery management systems based on electrochemical impedance spectroscopy are now recognized as a feasible solutions for online battery control and diagnostic. Since the impedance of a battery is always changing along with its state of charge and aging effects, it is important to have a stable impedance reference in order to calibrate and test a battery management system. In this work we propose a programmable impedance emulator that in principle could be used for the calibration of any battery management system based on electrochemical impedance spectroscopy. A digital finite-impulse-response filter is implemented, whose frequency response is programmed so as to reproduce exactly the impedance of a real battery in the frequency domain. The whole design process of the filter is presented in detail. An analytical expression for the impedance of real battery in the frequency domain is derived from an equivalent circuit model. The model is validated both through numerical simulations and experimental tests. In particular, the filter is implemented on a low-cost microcontroller unit, and the emulated impedance is measured by means of a custom-made electrochemical impedance spectroscopy measuring system, and verified by using standard commercial bench instruments. Results on this prototype show the feasibility of using the proposed emulator as a fully controllable and low-cost reference for calibrating battery impedance measurement systems.


2012 ◽  
Vol 263-266 ◽  
pp. 335-338 ◽  
Author(s):  
Gui Hua Hu ◽  
Jun Ming Xu ◽  
Ji Jun Zhou ◽  
Xiaoping Hu

Due to the negative effect of li-ion battery monomer inconsistent performance in electric bicycle, a low-cost intelligent li-ion BMS (battery management system) is designed based on atmega16. Multi-channel analog switch and differential amplifier are used for multi-channel data acquisition, and the equalization circuit is used for the balance of each single cell. The results show that the design can realize the intelligent management of li-ion battery.


2014 ◽  
Vol 102 (6) ◽  
pp. 1014-1030 ◽  
Author(s):  
Matthew T. Lawder ◽  
Bharatkumar Suthar ◽  
Paul W. C. Northrop ◽  
Sumitava De ◽  
C. Michael Hoff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document