Ceramic Composites for Automotive Friction Devices

2006 ◽  
Vol 45 ◽  
pp. 1394-1398 ◽  
Author(s):  
Antonio Licciulli ◽  
Antonio Chiechi ◽  
Daniela Diso ◽  
Alfonso Maffezzoli

Advanced braking devices can represent a promising application for ceramic matrix composites (CMC) with functional and structural properties. If the actual advanced braking materials could be at least partially replaced by CMCs, it might become the first consumer market for these materials. CMC containing three main phases, silicon carbide, graphite and carbon fibers were prepared. A systematic analysis of the processing-structure-properties relationship of the composite is carried out. In particular, silicon carbide provides the necessary hardness, whereas graphite is used for its lubricating properties, and carbon fibers are used as reinforcement. The samples, prepared using a reactive bonding technique, exhibited adequate mechanical properties, high resistance to thermal shocks and good stability after many thermal cycles. Morphological and structural investigations have been performed to optimize the content of each component. Preliminary tribological investigations are presented.


Author(s):  
S. A. Bortz

Experiments have been performed which indicate the potential of metal-fiber reinforced-ceramic matrix composites for use as a high temperature structural matrix. The results of this work reveal that metal-fiber reinforced ceramics obey compostie theory, and that after cracks occur in the matrix, a pseudo-ductility can be introduced into the composite. This toughness can be predicted from equations of work required to pull the fibers through the matrix. The relationship between strength, toughness, and crack depths, are dependent on the inter-facial bond between the fibers and matrix as well as fiber diameter and length. Based on the results of these experiments, multicomponent materials with superior resistance to failure from oxidation, thermal shock, and high mechanical stresses in air above 2400 F can be postulated. These materials have potential for use as gas turbine engine vanes.



Author(s):  
Andi Udayakumar ◽  
M. Rizvan Basha ◽  
Sarabjit Singh ◽  
Sweety Kumari ◽  
V. V. Bhanu Prasad


2018 ◽  
Vol 44 (12) ◽  
pp. 14742-14753 ◽  
Author(s):  
Shuoshuo Qu ◽  
Yadong Gong ◽  
Yuying Yang ◽  
Ming Cai ◽  
Yao Sun


2021 ◽  
Vol 87 (8) ◽  
pp. 51-63
Author(s):  
A. M. Shestakov

An increase the operating temperature range of structural elements and aircraft assemblies is one of the main goals in developing advanced and new models of aerospace equipment to improve their technical characteristics. The most heat-loaded aircraft structures, such as a combustion chamber, high-pressure turbine segments, nozzle flaps with a controlled thrust vector, must have a long service life under conditions of high temperatures, an oxidizing environment, fuel combustion products, and variable mechanical and thermal loads. At the same time, modern Ti and Ni-based superalloys have reached the limits of their operating temperatures. The leading world aircraft manufacturers — General Electric (USA), Rolls-Royce High Temperature Composite Inc. (USA), Snecma Propulsion Solide (France) — actively conduct fundamental research in developing ceramic materials with high (1300 – 1600°C) and ultrahigh (2000 – 2500°C) operating temperatures. However, ceramic materials have a number of shortcomings attributed to the high brittleness and low crack resistance of monolithic ceramics. Moreover, manufacturing of complex configuration and large-sized ceramic parts faces serious difficulties. Nowadays, ceramic composite materials with a high-temperature matrix (e.g., based on ZrC-SiC) and reinforcing filler, an inorganic fiber, (e.g., silicon carbide) appeared most promising for operating temperatures above 1200°C and exhibited enhanced energy efficiency. Ceramic fibers based on silicon compounds possess excellent mechanical properties: the tensile strength more than 2 GPa, modulus of elasticity more than 200 GPa, and thermal resistance at a temperature above 800°C, thus making them an essential reinforcing component in metal and ceramic composites. This review is devoted to silicon carbide core fibers obtained by chemical vapor deposition of silicon carbide onto a tungsten or carbon core, which makes it possible to obtain fibers a 100 – 150 μm in diameter to be used in composites with a metal matrix. The coreless SiC-fibers with a diameter of 10 – 20 μm obtained by molding a polymer precursor from a melt and used mainly in ceramic composites are also considered. A comparative analysis of the phase composition, physical and mechanical properties and thermal-oxidative resistance of fibers obtained by different methods is presented. Whiskers (filamentary crystals) are also considered as reinforcing fillers for composite materials along with their properties and methods of production. The prospects of using different fibers and whiskers as reinforcing fillers for composites are discussed.



2004 ◽  
Vol 843 ◽  
Author(s):  
Jun C. Nable ◽  
Shaneela Nosheen ◽  
Steven L. Suib ◽  
Francis S. Galasso ◽  
Michael A. Kmetz

ABSTRACTInterface coatings on fibers are important in ceramic matrix composites. In addition to providing toughness, the interface coating must also protect the reinforcing ceramic fibers from corrosive degradation. A double interface coating has been applied onto silicon carbide fibers. The double interface coating is comprised of a combination of nitride and oxide coatings. Among the nitrides, boron nitride and titanium nitride were utilized. These nitrides were deposited by CVD. The metal oxides of choice were aluminum oxide and zirconium oxide which were applied onto the nitride coatings by MOCVD. The phases on the coated fibers were determined by XRD. The surface coating microstructures were observed by SEM. The effect of the coatings on the tensile strengths was determined by Instron tensile strength measurements.



Sign in / Sign up

Export Citation Format

Share Document