Piezoelectric Impedance Sensor-Based Structural Health Monitoring for Critical Members of Civil Infrastructures

2008 ◽  
Vol 56 ◽  
pp. 395-400
Author(s):  
Chung Bang Yun ◽  
Seung Hee Park

This paper presents novel structural health monitoring techniques for critical members of civil structures using electro-mechanical impedance sensors. The basic concept of this technique is to monitor critical locations of a structure for changes in structural impedance that would indicate imminent damage. In this paper, principal hardware and software issues on this topic are reviewed. An active sensing node incorporating on-board microprocessor and radio frequency telemetry is introduced in a sense of tailoring wireless sensing technology to the impedance method. A data compression algorithm using a principal component analysis is embedded into the on-board chip of the active sensing node. Finally, a method for compensating the temperature effects on the impedance measurements using cross-correlation analysis with effective frequency shifts is presented.

Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2805 ◽  
Author(s):  
Hamidreza Hoshyarmanesh ◽  
Mojtaba Ghodsi ◽  
Minjae Kim ◽  
Hyung Hee Cho ◽  
Hyung-Ho Park

Turbomachine components used in aerospace and power plant applications preferably require continuous structural health monitoring at various temperatures. The structural health of pristine and damaged superalloy compressor blades of a gas turbine engine was monitored using real electro-mechanical impedance of deposited thick film piezoelectric transducers at 20 and 200 °C. IVIUM impedance analyzer was implemented in laboratory conditions for damage detection in superalloy blades, while a custom-architected frequency-domain transceiver circuit was used for semi-field circumstances. Recorded electromechanical impedance signals at 20 and 200 °C acquired from two piezoelectric wafer active sensors bonded to an aluminum plate, near and far from the damage, were initially utilized for accuracy and reliability verification of the transceiver at temperatures >20 °C. Damage formation in both the aluminum plate and blades showed a peak shift in the swept frequency along with an increase in the amplitude and number of impedance peaks. The thermal energy at 200 °C, on the other hand, enforces a further subsequent peak shift in the impedance signal to pristine and damaged parts such that the anti-resonance frequency keeps reducing as the temperature increases. The results obtained from the impedance signals of both piezoelectric wafers and piezo-films, revealed that increasing the temperature somewhat decreased the real impedance amplitude and the number of anti-resonance peaks, which is due to an increase in permittivity and capacitance of piezo-sensors. A trend is also presented for artificial intelligence training purposes to distinguish the effect of the temperature versus damage formation in sample turbine compressor blades. Implementation of such a monitoring system provides a distinct advantage to enhance the safety and functionality of critical aerospace components working at high temperatures subjected to crack, wear, hot-corrosion and erosion.


2014 ◽  
Vol 116 ◽  
pp. 147-164 ◽  
Author(s):  
Naserodin Sepehry ◽  
Firooz Bakhtiari-Nejad ◽  
Mahnaz Shamshirsaz

Sign in / Sign up

Export Citation Format

Share Document