Electro-Mechanical Impedance Method for Structural Health Monitoring of Space Structures: from Laboratory Experiments to Measurements during Spaceflight

Author(s):  
Andrei Zagrai ◽  
Aaron Misla ◽  
John Sanchez ◽  
Dyllian Powell
2008 ◽  
Vol 56 ◽  
pp. 395-400
Author(s):  
Chung Bang Yun ◽  
Seung Hee Park

This paper presents novel structural health monitoring techniques for critical members of civil structures using electro-mechanical impedance sensors. The basic concept of this technique is to monitor critical locations of a structure for changes in structural impedance that would indicate imminent damage. In this paper, principal hardware and software issues on this topic are reviewed. An active sensing node incorporating on-board microprocessor and radio frequency telemetry is introduced in a sense of tailoring wireless sensing technology to the impedance method. A data compression algorithm using a principal component analysis is embedded into the on-board chip of the active sensing node. Finally, a method for compensating the temperature effects on the impedance measurements using cross-correlation analysis with effective frequency shifts is presented.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2805 ◽  
Author(s):  
Hamidreza Hoshyarmanesh ◽  
Mojtaba Ghodsi ◽  
Minjae Kim ◽  
Hyung Hee Cho ◽  
Hyung-Ho Park

Turbomachine components used in aerospace and power plant applications preferably require continuous structural health monitoring at various temperatures. The structural health of pristine and damaged superalloy compressor blades of a gas turbine engine was monitored using real electro-mechanical impedance of deposited thick film piezoelectric transducers at 20 and 200 °C. IVIUM impedance analyzer was implemented in laboratory conditions for damage detection in superalloy blades, while a custom-architected frequency-domain transceiver circuit was used for semi-field circumstances. Recorded electromechanical impedance signals at 20 and 200 °C acquired from two piezoelectric wafer active sensors bonded to an aluminum plate, near and far from the damage, were initially utilized for accuracy and reliability verification of the transceiver at temperatures >20 °C. Damage formation in both the aluminum plate and blades showed a peak shift in the swept frequency along with an increase in the amplitude and number of impedance peaks. The thermal energy at 200 °C, on the other hand, enforces a further subsequent peak shift in the impedance signal to pristine and damaged parts such that the anti-resonance frequency keeps reducing as the temperature increases. The results obtained from the impedance signals of both piezoelectric wafers and piezo-films, revealed that increasing the temperature somewhat decreased the real impedance amplitude and the number of anti-resonance peaks, which is due to an increase in permittivity and capacitance of piezo-sensors. A trend is also presented for artificial intelligence training purposes to distinguish the effect of the temperature versus damage formation in sample turbine compressor blades. Implementation of such a monitoring system provides a distinct advantage to enhance the safety and functionality of critical aerospace components working at high temperatures subjected to crack, wear, hot-corrosion and erosion.


2014 ◽  
Vol 116 ◽  
pp. 147-164 ◽  
Author(s):  
Naserodin Sepehry ◽  
Firooz Bakhtiari-Nejad ◽  
Mahnaz Shamshirsaz

2010 ◽  
Vol 21 (9) ◽  
pp. 921-940 ◽  
Author(s):  
Andrei Zagrai ◽  
Derek Doyle ◽  
Vlasi Gigineishvili ◽  
Jacob Brown ◽  
Hugh Gardenier ◽  
...  

Author(s):  
Naserodin Sepehry ◽  
Firooz Bakhtiari-Nejad ◽  
Mahnaz Shamshirsaz ◽  
Weidong Zhu

One of the main objectives of the structural health monitoring by piezoelectric wafer active sensor (PWAS) using electromechanical impedance method is continuously damage detection applications. In present work impedance method of beam structure is considered and the effect of early crack using breathing crack modeling is studied. In order to model the effect of a crack in beam, the beam is connected with a rotational spring in crack location. The Rayleigh–Ritz method is used to generate ordinary differential equation of cracked beam. Firstly, only open crack is considered that this is leads to linear system equation. In linear system, time domain system equations are converted to frequency domain, and then impedance of PWAS in frequency domain is calculated. Secondly, the breathing crack is modeled to be fully open or fully closed. This phenomenon leads to the nonlinear system equations. These nonlinear equations are solved using pseudo-arc length continuation scheme and collocation method for any harmonic voltage applied to actuator. Then impedance of PWAS is calculated. Two methods are used to detect early crack using breathing crack modeling on PWAS impedance. At the first, frequency response of breathing crack in the frequency range with its sub-harmonics is calculated. Second, only frequency response of one harmonic is computed with its super-harmonics. Finally, the detection method of linear is compared with nonlinear model.


Author(s):  
Naserodin Sepehry ◽  
Firooz Bakhtiari-Nejad ◽  
Weidong Zhu

The structural health monitoring by piezoelectric wafer active sensor (PWAS) using electromechanical impedance method used for monitoring of structure. In present work impedance method of elasto-plastic beam structure is studied. In order to model the effect of a plastic in beam, the moment-curvature relationship for elasto-plastic region for loading and unloading is used. The finite difference method is used to discretize beam with piezoelectric. The piezoelectric actuator is modeled by equivalent moment. Then output current of piezoelectric sensor is calculated. Firstly, elastic modeling of beam is considered that this is leads to linear system equation. In linear system, time domain system equations are calculated and Fourier transform of current output obtained, and then impedance of PWAS in frequency domain is calculated. Secondly, the elasto-plastic of beam is modeled. This phenomenon leads to the nonlinear system equations. These nonlinear equations are solved using finite difference method for any harmonic voltage applied to actuator. Then impedance of PWAS is calculated. Two methods are used to detect elasto-plastic modeling on PWAS impedance. At the first, frequency response of elastic beam as intact model is compared with elasto-plastic results in a desired frequency range. Second, only frequency response of one harmonic is computed with its super-harmonics. Finally, the detection method of linear is compared with nonlinear model.


Author(s):  
Liuxian Zhao ◽  
Lingyu Yu ◽  
Mattieu Gresil ◽  
Michael Sutton ◽  
Siming Guo

Electromechanical impedance (EMI) method is an effective and powerful technique in structural health monitoring (SHM) which couples the mechanical impedance of host structure with the electrical impedance measured at the piezoelectric wafer active sensor (PWAS) transducer terminals. Due to the electromechanical coupling in piezoelectric materials, changes in structural mechanical impedance are reflected in the electrical impedance measured at the PWAS. Therefore, the structural mechanical resonances are reflected in a virtually identical spectrum of peaks and valleys in the real part of the measured EMI. Multi-physics based finite element method (MP-FEM) has been widely used for the analysis of piezoelectric materials and structures. It uses finite elements taking both electrical and mechanical DOF’s into consideration, which allows good differentiation of complicated structural geometries and damaged areas. In this paper, MP-FEM was then used to simulate PWAS EMI for the goal of SHM. EMI of free PWAS was first simulated and compared with experimental result. Then the constrained PWAS was studied. EMI of both metallic and glass fiber composite materials were simulated. The first case is the constrained PWAS on aluminum beam with various dimensions. The second case studies the sensitivity range of the EMI approach for damage detection on aluminum beam using a set of specimens with cracks at different locations. In the third case, structural damping effects were also studied in this paper.. Our results have also shown that the imaginary part of the impedance and admittance can be used for sensor self-diagnosis.


Sign in / Sign up

Export Citation Format

Share Document