Design of a Cool Color Glaze for a Solar Reflective Tile

2014 ◽  
Vol 92 ◽  
pp. 159-167
Author(s):  
Chiara Ferrari ◽  
Alberto Muscio ◽  
Cristina Siligardi ◽  
Tiziano Manfredini

One of the most common materials-measures to counteract Urban Heat Island Effect can be identified in cool roof: white surface characterized by high solar reflectance and high thermal emissivity. One of the problems for the realization of cool roof is the difficult matching of white color with urban planning needs. In order to better integrate cool roofs into skylines cool colors were developed integrating pigments into cool roof surfaces. Cool roof market is actually dominated by organic based products with optimal solar performances but low durability against ageing. The use of ceramic-based products is crucial in the design of a new durable cool roof thanks to their naturally high thermal emissivity (ε=0.90) and their high chemical durability. The development of a new ceramic-based product made by a traditional porcelain stoneware tile as support, an inorganic engobe was started in the last years. In order to complete the product with a suitable glaze, eight different inorganic pigments were added to three different glazes, each one characterized by different surfaces features. Even if the addition of glazes, and pigments decrease the reflectance values of the solar reflective engobe, some promising results were achieved in this study especially regarding warm colored glazes.

Author(s):  
Qijiao Xie ◽  
Jing Li

As a nature-based solution, development of urban blue-green spaces is widely accepted for mitigating the urban heat island (UHI) effect. It is of great significance to determine the main driving factors of the park cool island (PCI) effect for optimizing park layout and achieving a maximum cooling benefit of urban parks. However, there have been obviously controversial conclusions in previous studies due to varied case contexts. This study was conducted in Wuhan, a city with high water coverage, which has significant differences in context with the previous case cities. The PCI intensity and its correlation with park characteristics were investigated based on remote sensing data. The results indicated that 36 out of 40 urban parks expressed a PCI effect, with a PCI intensity of 0.08~7.29 °C. As expected, larger parks with enough width had stronger PCI intensity. An increased density of hardened elements in a park could significantly weaken PCI effect. Noticeably, in this study, water bodies in a park contributed the most to the PCI effect of urban parks, while the vegetated areas showed a negative impact on the PCI intensity. It implied that in a context with higher water coverage, the cooling effect of vegetation was weakened or even masked by water bodies, due to the interaction effect of different variables on PCI intensity.


2021 ◽  
Vol 13 (3) ◽  
pp. 1099
Author(s):  
Yuhe Ma ◽  
Mudan Zhao ◽  
Jianbo Li ◽  
Jian Wang ◽  
Lifa Hu

One of the climate problems caused by rapid urbanization is the urban heat island effect, which directly threatens the human survival environment. In general, some land cover types, such as vegetation and water, are generally considered to alleviate the urban heat island effect, because these landscapes can significantly reduce the temperature of the surrounding environment, known as the cold island effect. However, this phenomenon varies over different geographical locations, climates, and other environmental factors. Therefore, how to reasonably configure these land cover types with the cooling effect from the perspective of urban planning is a great challenge, and it is necessary to find the regularity of this effect by designing experiments in more cities. In this study, land cover (LC) classification and land surface temperature (LST) of Xi’an, Xianyang and its surrounding areas were obtained by Landsat-8 images. The land types with cooling effect were identified and their ideal configuration was discussed through grid analysis, distance analysis, landscape index analysis and correlation analysis. The results showed that an obvious cooling effect occurred in both woodland and water at different spatial scales. The cooling distance of woodland is 330 m, much more than that of water (180 m), but the land surface temperature around water decreased more than that around the woodland within the cooling distance. In the specific urban planning cases, woodland can be designed with a complex shape, high tree planting density and large planting areas while water bodies with large patch areas to cool the densely built-up areas. The results of this study have utility for researchers, urban planners and urban designers seeking how to efficiently and reasonably rearrange landscapes with cooling effect and in urban land design, which is of great significance to improve urban heat island problem.


2021 ◽  
Vol 24 (3/4) ◽  
pp. 400
Author(s):  
Mohammed Al Marzooqi ◽  
Hazrat Bilal ◽  
Rajesh Govindan ◽  
Krishna Kumar Kanikicharla ◽  
Tareq Al Ansari

Sign in / Sign up

Export Citation Format

Share Document