The Flow of Radiated Carreau Dusty Fluid over Exponentially Stretching Sheet with Partial Slip at the Wall

2018 ◽  
Vol 16 ◽  
pp. 96-108 ◽  
Author(s):  
H.B. Santosh ◽  
Mahesha ◽  
Chakravarthula S.K. Raju ◽  
Oluwole Daniel Makinde

In this study, we addressed the impact of magnetic field on fluid flow and heat transfer of an in compressible Carreau fluid over exponentially stretching sheet in addition with fluid and dust particle suspension. Thermal radiation and non-uniform heat source/sink were included to develop heat transport phenomena. Dusty fluids have various applications such as processing of material, nuclear heat treatment, cooling process, treatment of waste water etc. The relevant governing equations are converted into ordinary differential equation using similarity transformation the transformed ordinary differential equations are then solved numerically by shooting technique along with Runge-Kutta method The effect of certain parameters on the dimensionless velocity and temperature are presented graphically. The physical quantities of the flow such as the friction factor and Local Nusselt number were calculated. It was found from the study that the velocity slip parameter increases the temperature profiles.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
I. Swain ◽  
S. R. Mishra ◽  
H. B. Pattanayak

An attempt has been made to study the heat and mass transfer effect in a boundary layer MHD flow of an electrically conducting viscous fluid subject to transverse magnetic field on an exponentially stretching sheet through porous medium. The effect of thermal radiation and heat source/sink has also been discussed in this paper. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations and then solved numerically using a fourth-order Runge-Kutta method with a shooting technique. Graphical results are displayed for nondimensional velocity, temperature, and concentration profiles while numerical values of the skin friction local Nusselt number and Sherwood number are presented in tabular form for various values of parameters controlling the flow system.


Sign in / Sign up

Export Citation Format

Share Document