Study on Culture of Human Dental Pulp Stem Cells to Apply in Tissue Engineering

Author(s):  
Tran Le Bao Ha ◽  
Doan Nguyen Vu ◽  
To Minh Quan ◽  
Ngoc Phan Kim ◽  
Hung Hoang Tu ◽  
...  

Dental pulp cell research might open a promising application in tooth tissue regeneration. The aim of this study is to establish a protocol for in vitro culture the human dental pulp stem cells to apply in tissue engineering. Human premolar and impacted third molars were collected and disinfected. Dental pulp fragments were cultured with Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F12) medium supplemented with 10% Fetal Bovine Serum (FBS). Dental pulp stem cells (DPSCs) were identified using proliferation assay, RT-PCR and flow cytometry. Growth of DPSCs on dentin surface was assessed by MTT assay. The study showed that we successfully isolated, cultured and characterized dental pulp cells by outgrowth method. Cultured population of cells expressed in high level of Oct4, CD146, CD90, CD44. DPSCs proliferated on chemically and mechanically treated dentin surface. This research provides important information and a basis for further investigations to establish dental tissue engineering protocols.

Biomedicines ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 483
Author(s):  
Jon Luzuriaga ◽  
Jon Irurzun ◽  
Igor Irastorza ◽  
Fernando Unda ◽  
Gaskon Ibarretxe ◽  
...  

The generation of vasculature is one of the most important challenges in tissue engineering and regeneration. Human dental pulp stem cells (hDPSCs) are some of the most promising stem cell types to induce vasculogenesis and angiogenesis as they not only secrete vascular endothelial growth factor (VEGF) but can also differentiate in vitro into both endotheliocytes and pericytes in serum-free culture media. Moreover, hDPSCs can generate complete blood vessels containing both endothelial and mural layers in vivo, upon transplantation into the adult brain. However, many of the serum free media employed for the growth of hDPSCs contain supplements of an undisclosed composition. This generates uncertainty as to which of its precise components are necessary and which are dispensable for the vascular differentiation of hDPSCs, and also hinders the transfer of basic research findings to clinical cell therapy. In this work, we designed and tested new endothelial differentiation media with a fully defined composition using standard basal culture media supplemented with a mixture of B27, heparin and growth factors, including VEGF-A165 at different concentrations. We also optimized an in vitro Matrigel assay to characterize both the ability of hDPSCs to differentiate to vascular cells and their capacity to generate vascular tubules in 3D cultures. The description of a fully defined serum-free culture medium for the induction of vasculogenesis using human adult stem cells highlights its potential as a relevant innovation for tissue engineering applications. In conclusion, we achieved efficient vasculogenesis starting from hDPSCs using serum-free culture media with a fully defined composition, which is applicable for human cell therapy purposes.


Author(s):  
Mansoore Saharkhiz ◽  
Fariba Emadian Razavi ◽  
Seyed Mohammad Riahi ◽  
Malaksima Ayadilord ◽  
Zeinab Rostami ◽  
...  

2019 ◽  
Vol 52 (6) ◽  
Author(s):  
Alessio Zordani ◽  
Alessandra Pisciotta ◽  
Laura Bertoni ◽  
Giulia Bertani ◽  
Antonio Vallarola ◽  
...  

2019 ◽  
Vol 13 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Saeed Rahimi ◽  
Sadegh Salarinasab ◽  
Negin Ghasemi ◽  
Reza Rahbarghazi ◽  
Shahriar Shahi ◽  
...  

Background. The aim of this in vitro study was to investigate the effect of zinc oxide (ZnO) and zirconium oxide (ZrO2) microparticles (MPs) and nanoparticles (NPs) in combination with white Portland cement (WPC) on odontogenic capacity of human dental pulp stem cells over a period of 21 days. Methods. Synthesized ZnO and ZrO2 particles were characterized using scanning electron microscopy and transmission electron microscopy. The viability of human dental pulp stem cells was measured by a 3-(4,5-dimethylthiazolyl-2-yl)-2,5- diphenyltetrazolium bromide assay at 7-, 14- and 21-day intervals after seeding on WPC disks enriched with ZnO and ZrO2 MPs and NPs. Odontogenic potential of ZnO and ZrO2 particles in combination with WPC was investigated by alkaline phosphatase (ALP) activity and ionized calcium level of supernatant culture media at different time intervals. Data were analyzed using one-way ANOVA and post hoc Tukey tests. Results. All the materials exhibited cell viability over a 21-day period, except for WPC with ZnO NPs on day 7, although it was not statistically significant (P>0.05). The ALP activity and ionized calcium level increased in all the groups compared to the control group (P<0.05). ZnO NPs had superior effect on odontogenic activity and calcium ion release compared to ZnO MPs (P=0.046). There was no significant difference between ZrO2 MPs and NPs in odontogenic activity (P>0.05). Conclusion. WPC enriched with ZnO and ZrO2 increased ALP activity and calcium ion release of human dental pulp stem cells over a period of 21 days in vitro.


2016 ◽  
Vol 32 (8) ◽  
pp. 1052-1064 ◽  
Author(s):  
Lina Gölz ◽  
Ruth Andrea Simonis ◽  
Joana Reichelt ◽  
Helmut Stark ◽  
Matthias Frentzen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document