The Influence of Aging on Industrially Cold Drawn Aluminum Alloy (6101) Used in the Electric Transmission Lines

Author(s):  
Mosbah Zidani ◽  
Mohamed Djamel Hadid ◽  
Toufik Djimaoui ◽  
Salim Messaoudi ◽  
Lakhdar Bessais ◽  
...  

An investigation has been done to study the effect of heat treatment at low temperature on the development of mechanical and electrical properties of the industrially cold drawn aluminum alloy wires (6101). This aluminum alloy is used by the national company of electric cables of Biskra (ENICAB) for the transmission lines of electrical energy. The mechanical and electrical properties of the Al-Mg-Si alloys can be changed by heat treatment. Different technical procedures have been used In order to understand the complicated effect of aging on 6101 aluminum alloy; we have used the optical microscopy, hardness measurements and the electrical resistivity measurement. It was noted that the cold drawing of this aluminum alloy increase the microhardness which is produced by a high strain hardening of the material accompanied by a development of a fibrous texture. We notice also that the electrical resistivity of the alloy increase with an increase of the deformation level and decrease of this properties with the increasing aging time at 170 ° C.

2005 ◽  
Vol 86 (6) ◽  
pp. 064104 ◽  
Author(s):  
Yonghao Han ◽  
Chunxiao Gao ◽  
Yanzhang Ma ◽  
Hongwu Liu ◽  
Yuewu Pan ◽  
...  

2011 ◽  
Vol 319-320 ◽  
pp. 51-59 ◽  
Author(s):  
Abdullah A. Refeay ◽  
N.A. Kamel ◽  
M.A. Abdel-Rahman ◽  
Yahia A. Lotfy ◽  
Emad A. Badawi

A comprehensive and systematic study using PALS technique, Vickers hardness test and electrical LCR meter were undertaken to follow property development during the recently promoted interrupted ageing treatment for 2024 aluminum alloy. In this work, solution heat treatments at different temperatures were performed in aircraft materials 2024 aluminum alloy. This work describes the development of the dependence of mechanical, electrical properties of 2024 Al-alloys on heat treatment to characterize microstructural changes during heat treatment. PALS, mechanical and electrical testing will be used to measure the features of the material as a function of time for each ageing temperatures.


2018 ◽  
Vol 173 ◽  
pp. 811-819 ◽  
Author(s):  
Kun Liang ◽  
Xiaohui Zeng ◽  
Xiaojun Zhou ◽  
Chenbo Ling ◽  
Ping Wang ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1027
Author(s):  
Beata Smyrak ◽  
Bartosz Jurkiewicz ◽  
Małgorzata Zasadzińska ◽  
Marek Gniełczyk ◽  
Patryk Jałowy

The raw material for the production of Al-Mg-Si wires is wire rods, created in the Continuus Properzi line in temper T1 (cooled after forming at an elevated temperature and after natural aging). The general technologies for shaping the mechanical and electrical properties of Al-Mg-Si wire rods include two kinds: high- and low-temperature heat treatments. High-temperature heat treatment includes a homogenization process and a supersaturation process. Low-temperature heat treatment takes place after supersaturation and includes natural or artificial aging. This study shows how the amount of Mg and Si influences the mechanical and electrical properties of EN-AW 6101 wire rods after different kinds of heat treatments. As the general aim of this study was to determine the effect of the material’s temper on its mechanical and electrical properties, the research considered the initial parameters of the starting materials being examined. These parameters can be modified by selecting the chemical composition of the Al-Mg-Si alloy and the value of precipitation hardening obtained with artificial.


Sign in / Sign up

Export Citation Format

Share Document