Effect of Variable Heat Source/Sink on Chemically Reacting 3D Slip Flow Caused by a Slendering Stretching Sheet

Author(s):  
Macharla Jayachandra Babu ◽  
Naramgari Sandeep

Three-dimensional magnetohydromagnetic slip flow of chemically reacting fluid over a variable thickness stretching sheet with space and temperature dependent heat source/sink was analysed numerically. Runge-Kutta and Newton’s methods are employed for solving the reduced ordinary differential equations with the help of similarity variables. Plots are demonstrated and examined for several parameters of concern. Also the effect of the same parameters on skin friction coefficient, heat and mass transfer rates are presented in tabular form. We found a good agreement of the present results by comparing with the published results. It is observed that space and temperature dependent heat source/sink parameters acts like controlling parameters of heat transfer. Slip effects reduce the development of concentration and thermal boundary layers.

2018 ◽  
Vol 387 ◽  
pp. 615-624 ◽  
Author(s):  
H. Thameem Basha ◽  
Oluwole Daniel Makinde ◽  
Akshay Arora ◽  
Amandeep Singh ◽  
R. Sivaraj

The intention of this communication is to explore the characteristics of Lorentz force on the fluid transport properties of a chemically reacting nanofluid with two types of geometries. Simulations have been done to investigate the controlling equations utilizing Crank-Nicolson scheme. Influence of embedded parameters such as Hartman number, heat source/sink, Brownian diffusion, chemical reaction parameter and thermophoretic diffusivity is graphically presented. Tables demonstrate the significant impact of sundry parameters on skin-friction factor, heat and mass transfer rates. The achieved results expose that the Hartman number having high influences on the fluid flow and heat transfer characteristics.


2021 ◽  
Vol 10 (3) ◽  
pp. 380-387
Author(s):  
R. Jayakar ◽  
B. Rushi Kumar

Aim: The research carried out in this article is based on experimenting with a 3-D MHD nanofluid flow on a sheet as slendering stretch bearing the slip effects, thermophoresis, Brownian Motion, heat source, and sink. Water-based Cuo and Cu nano-fluids were considered for the analysis. Following the suitable techniques of similarity transformation, the partial differential equations also called the governing equations are deduced into ODE (Ordinary Differential Equations). The mathematical results were estimated by applying the Methods of Newton and Runge-Kutta. The calculations along with the graphs for different parameters were also explained. Novelty: The outcomes of novel effective graphs for different parameters of interest are shown and explained. It has been found that heat-sink/source parameters depending on the temperature and space serve as heat transfer parameters. Slip effects minimize the thermal boundary layers as well as concentration development. It is discovered that CuO-Water, as well as Cu-Water nanofluids, have homogeneous boundary layers (concentration, thermal and momentum),and as contrasted with the CuO-Water nanofluids, the mass, and the heat transfer rate is higher in Cu-Water nanofluids. The paper concludes by comparing the outcomes of the current approach with findings that already existed.


2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 495-506 ◽  
Author(s):  
Oluwole Makinde ◽  
Fazle Mabood ◽  
Mohammed Ibrahim

In this paper, steady 2-D MHD free convective boundary-layer flows of an electrically conducting nanofluid over a non-linear stretching sheet taking into account the chemical reaction and heat source/sink are investigated. The governing equations are transformed into a system of non-linear ODE using suitable similarity transformations. Analytical solution for the dimensionless velocity, temperature, concentration, skin friction coefficient, heat and mass transfer rates are obtained by using homotopy analysis method. The obtained results show that the flow field is substantially influenced by the presence of chemical reaction, radiation, and magnetic field.


Sign in / Sign up

Export Citation Format

Share Document