Numerical Simulation of Non-Adiabatic Shear Banding in Metal Forming Process using Finite Element Method

2000 ◽  
Vol 177-180 ◽  
pp. 553-558 ◽  
Author(s):  
Z.H. Chen ◽  
Chak Yin Tang ◽  
Tai Chiu Lee

Metal forming process is a widely used manufacturing process especially in high volume metal production system. In this paper, the main objective is using Bubnov-Galerkin finite element model to derive the pressure field set up at various cross-sections of a metal blank during a forging process, and the four Lagrange quadratic elements were assembled to represent the various metal blank. The governing equation adopted for this paper is a one-dimensional differential equation describing the pressures exerted on the forging process. During the analysis, the various metal blanks are divided into a finite number of elements and the weighted integral form for each element were formed after applying the Bubnov-Galerkin weighted residual method. A matrix form under certain boundary conditions from the weighted residual method were used to obtain the pressure distribution across the cross-section of the various metal blanks. Finite element results are obtained for a value of a circular disc diameter, thickness, coefficient of friction, principal stress, length, and radius of a circular material. Finite element method and the Exact solution approach are used to achieve and compare both results. Furthermore, the combination of both methods shows that there are potentials for using this approach towards the optimization of metal forming in manufacturing processes and some engineering practices. Keywords: Forging; LaGrange Interpolation Function; Bubnov-Galerkin Weighted Residual Method; Finite Element Method.


2014 ◽  
Vol 607 ◽  
pp. 112-117
Author(s):  
Khemajit Sena ◽  
Surasith Piyasin

This study aims to find a solution to improve the formability in a deep drawing process. For this purpose drawbeads were used to avoid wrinkles and ruptures. The finite element method was applied to simulate the 3D metal forming process using a die and drawbead. The drawbead amount, position, size and form were studied for their affects on the formability. 3 drawbead patterns with 3 different heights were examined. The simulation was performed for each drawbead pattern and each drawbead geometrical parameter and the failure elements were counted. The best pattern chosen was the pattern that resulted in the least failure elements.


2011 ◽  
Vol 474-476 ◽  
pp. 251-254
Author(s):  
Jian Jun Wu ◽  
Wei Liu ◽  
Yu Jing Zhao

The multi-step forward finite element method is presented for the numerical simulation of multi-step sheet metal forming. The traditional constitutive relationship is modified according to the multi-step forming processes, and double spreading plane based mapping method is used to obtain the initial solutions of the intermediate configurations. To verify the multi-step forward FEM, the two-step simulation of a stepped box deep-drawing part is carried out as it is in the experiment. The comparison with the results of the incremental FEM and test shows that the multi-step forward FEM is efficient for the numerical simulation of multi-step sheet metal forming processes.


2013 ◽  
Vol 773-774 ◽  
pp. 115-118
Author(s):  
Andrzej Gontarz

This paper presents results of theoretical and experimental research works on metal forming process of a hub. A typical technology of forging on hammer of this part with flash was discussed. Two new processes of a hub forging were proposed, characterized by large material savings in comparison with typical technology. The first process is based on forming without flash of a forging with axial cavity. The second one is connected with forming of forging from pipe billet. The realization of these processes is possible at the application of a press with three movable working tools. Theoretical research works were done on the basis of simulations by means of finite element method. Simulations were made mainly in order to determine kinematics of material flow in forging processes and precision of shape and dimensions of obtained products. The first of the proposed processes was experimentally verified and a product of good quality was obtained. Material consumption of the analyzed processes and other factors acting on their effectiveness were also compared.


2013 ◽  
Vol 789 ◽  
pp. 436-442
Author(s):  
Agus Dwi Anggono ◽  
Waluyo Adi Siswanto ◽  
Omar Badrul

Numerical simulation by finite element method has become a powerful tool in predicting and preventing the unwanted effects of sheet metals technological processing. One of the most important problems in sheet metal forming is the compensation of springback. To improve the accuracy of the formed parts, the die surfaces are required to be optimized so that after springback the geometry falls at the expected shape. This paper presents and discusses numerical simulation procedure of die compensation by using the methods of Simplified Displacement Adjustment (SDA). This analysis use Benchmark 3 models of Numisheet 2011. Sensitively analysis was done by using finite element method (FEM) show that the springback values are influenced by element size, integration points and material properties.


Sign in / Sign up

Export Citation Format

Share Document