The Static Collapse Characteristics of CFRP Side Members Due to Stacking Condition

2006 ◽  
Vol 326-328 ◽  
pp. 1055-1058
Author(s):  
Kil Sung Lee ◽  
In Young Yang

Currently, stacking condition related to the energy absorption of composite materials is being considered as an issue for the structural efficiency and safety of automobiles, aerospace vehicles, trains, ships even elevators during collision. In particular, CFRP (carbon fiber reinforced plastics) composite materials have found wide applicability because of their inherent design flexibility and improved material properties. The most important objective in designing automobiles is currently to focus on environment-friendly aspect and safety performance aspect. Therefore, the designing automobile should be more concerned on the aspect of securing safety performance, but at the same time, it also should consider reducing weight of automobile structural member. In this study, CFRP (Carbon Fiber Reinforced Plastics) side members with single-hat-section shaped were manufactured. The axial static collapse tests were performed for the members using universal testing machine, and the collapse mode and energy absorption characteristics were analyzed according to stacking condition such as fiber orientation angle and shape of the section.

2016 ◽  
Vol 10 (3) ◽  
pp. 334-340 ◽  
Author(s):  
Shigehiko Sakamoto ◽  
◽  

Carbon Fiber Reinforced Plastics (CFRP) is well known as a Carbon Fiber Reinforced Plastics (CFRP) is well known as a difficult-to-cut material that has very strong physical and mechanical characteristics. Drilling technique of CFRP that is one of the most important cutting operations is currently carried out in the aviation and automotive industries, among others. Parts manufactured from CFRP have many precision holes used as rivet holes and for various purposes. There are typicaly many problems involved in the precision drilling processes of CFRP plate such as burrs, chippings and delaminations of composite materials, and the rapid wear of the drilling tools. In this research study, various twist drill bits, square end mills and ball noses end mills made of materials including cemented-carbide, TiAlN PVD-coated cemented carbide, Diamond-Like Carbon (DLC) coated cemented carbide and high-speed steel, are tested. CFRP drilling tests without coolant are carried out on vertical machining centers. It is found that the ball nose end mill is the most suitable for drilling CFRP composite materials.


2021 ◽  
pp. 28-37
Author(s):  
P. N. Shkatov ◽  
G. A. Didin ◽  
A. A. Ermolaev

The paper is concerned with increasing sensitivity of eddy current nondestructive testing of most dangerous delamination in carbon-fiber reinforced plastics (CFRP). Increased sensitivity is achieved by separate registration and comparison of eddy current signals obtained from a set of stratifications of carbon fibers with the same orientation. The separation of eddy current signals is possible due to pronounced anisotropy of the electrical conductivity of the layers dominant in the direction of the fibers of the corresponding layer. Eddy-current signals are registered by eddy current probes with maximum sensitivity in a given angular direction. Prior to the scan eddy current signals of the probe are leveled on a defect-free area. The influence of the working gap on the difference between the eddy current signals of the probe is suppressed by normalizing it according to one of the signals. The analysis of the registered signals from delamination has been performed using an approximate calculation model. The reliability of the obtained results has been confirmed by comparison with experimental results and calculations using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document