Simulation of Inelastic Deformation and Thermal Mechanical Stresses in Twin-Roll Casting Process of Mg Alloy

2007 ◽  
Vol 340-341 ◽  
pp. 877-882
Author(s):  
Xiao Dong Hu ◽  
Dong Ying Ju

Twin-roll thin strip casting process combines casting and hot rolling process into a single step; in which melt and solid states exist in the casting region, so its deformation is more complex than rolling process. In this paper, Anand’s model, a unified visco-plasticity constitutive model, was employed to simulate the highly nonlinear behavior in the twin-roll casting process. Anand model’s parameters were regressed based on compression tests at various temperature and strain rate for magnesium alloy AZ31. To calculate the thermal mechanical stresses, the thermal flow of twin-roll casting process was simulated firstly; then stresses were calculate, in which the temperature field result of thermal flow was imposed as body load, and a small displacement load along roller tangential direction was imposed simultaneously in order to simulate rolling action. The deformation results can well describe the forward slip zone, backward slip zone and melt eddy zone in the casting region. Based on the results, the applicability of Anand’s model on twin-roll casting process was discussed.

2018 ◽  
Vol 918 ◽  
pp. 48-53 ◽  
Author(s):  
Olexandr Grydin ◽  
Mykhailo Stolbchenko ◽  
Maria Bauer ◽  
Mirko Schaper

The industrial application of high-alloyed Al-Mg-Si alloys for the production of thin strips by means of twin-roll casting is limited due to the structural inhomogeneity and segregation formation. To reach the highest mechanical properties of the finished product, a direct influence on the strip formation conditions during the twin-roll casting can be applied. Analogous to the asymmetric rolling process, additional shear stresses were created in the strip forming zone by using different circumferential velocities and torques of the caster rolls. To provide the asymmetric process conditions, only one caster roll was left driven and the second one was left idling during the casting process. The microstructure and the mechanical properties of the strips in the as-cast state as well as after the homogenization and subsequent age-hardening were analyzed. A comparison of the test results showed a positive influence of the asymmetry conditions on the strips’ properties.


2012 ◽  
Vol 452-453 ◽  
pp. 7-11 ◽  
Author(s):  
Wei Pei ◽  
Yu Hui Sha ◽  
Fang Zhang ◽  
Liang Zuo

In this paper, non-silicon steel sheets were produced by both twin-roll casting method and conventional process. Orientation characteristics and texture evolution of the sheets during casting, cold rolling and recrystallization annealing were investigated for comparison. It was found that the subsurface of twin-roll casting strips are characterized by weak {100} orientation while the central layer by random orientation. Twin-roll casting process can decrease α fiber (//RD) and increase γ fiber (//ND) during cold rolling process. Consequently, the η fiber (//RD) favorable for magnetic properties of non-silicon steels is enhanced and the detrimental {111} component is suppressed after annealing.


2015 ◽  
Vol 833 ◽  
pp. 15-18 ◽  
Author(s):  
Zhi Pu Pei ◽  
Dong Ying Ju ◽  
Hong Yang Zhao ◽  
Xiao Dong Hu

A quantitative understanding of the twin-roll casting process is required to get high quality as-cast magnesium alloy strips. In this paper, a thermal flow-solidification simulation was carried out to study the behavior of casting zone and its effects on defects generation deeply. Results show that a lower pouring temperature is not suitable for producing defect-free magnesium alloy strips. With increasing of the casting speed, the tendency of cracks formation will getting smaller because of the more uniform temperature distribution. A low pool level leads to a small metal-roll contact area, and a sharp temperature distribution will generates under this situation, which is not good for strips quality.


2005 ◽  
Vol 488-489 ◽  
pp. 439-444 ◽  
Author(s):  
Dong Ying Ju ◽  
Hong Yang Zhao ◽  
Xiao Dong Hu ◽  
Koichi Ohori ◽  
Mituo Tougo

Strip continuous casting by twin roll method is a rapidly solidifying process, which can directly produce thin strips,reduce energy consumption and product cost of various metal materials. However, the casting of magnesium alloys with large solidifying ranges lead to some problems such as surface and internal defect, variation of solidification finish point for Mg sheet. In this research, the process conditions for a twin roll caster are analyzed by thermal flow simulation. The effect of type and dimension of delivery nozzles on production of Mg alloy are studied. A proper match of the setback distance of thin nozzle and casting speed is studied by thermal flow simulation, based on the characteristics of Mg melt handling, flow dynamics control and solidification.


2017 ◽  
Vol 735 ◽  
pp. 18-23
Author(s):  
Yuta Kashitani ◽  
Shinichi Nishida ◽  
Junshi Ichikawa ◽  
Hiroto Ohashi ◽  
Naoshi Ozawa ◽  
...  

This paper describes a vertical type twin roll strip casting process for producing aluminum alloy strip of ADC12, A3003 and A7075. Twin roll casting process is able to produce a strip from molten metal directly. Thus this process has a possibility to reduce total cost of sheet making comparing to conventional rolling process. Aluminum alloy ADC12 is a casting material that is used for die casting. A3003 is known as a wrought aluminum alloy for aluminum can body sheet. The A3003 sheet is generally produced by rolling, so it is effective for reducing a process cost to produce the strip by twin roll casting process. Aluminum alloy A7075 has high tensile strength, and it is known as a material for aerospace application. The sheet is manufactured in small quantities comparing to the other sheet aluminum alloy. It is supposed that the demand of high tensile strength aluminum sheet such as A7075 is going to increase for weight saving of structural material. In this study, twin roll casting experiment was performed to produce these three aluminum alloy strip in same experimental conditions. Castability, surface conditions and strip thickness were estimated. It was possible to cast these aluminum alloy strip.


2013 ◽  
Vol 690-693 ◽  
pp. 218-221
Author(s):  
Ting Zhang ◽  
Xiao Ming Zhang ◽  
Zhi Yuan Guo ◽  
Yu Qian Wang ◽  
Cheng Gang Li

Effect of secondary cooling on non-oriented electrical steel strips was investigated. The 2.0 mm thick cast strips contain two compositions were produced by twin-roll casting process, cooled in the air or cooled by spraying water. The microstructure was observed by optical microscopy, and EBSD was used to characterize the texture of the cast strips. The results showed that air-cooling cast strips have uniform and equiaxed grains with average size of 250 μm. The microstructure of the water-spraying cast strips compose of most equiaxed grains and a small number of abnormal big grains. At the same time, the secondary cooling rate mildly affects the cast texture strength but has no influence on the texture type.


Sign in / Sign up

Export Citation Format

Share Document