Preparation and Characterization of Poly(ε-Caprolactone)/Multiwalled Carbon Nanotube Composites

2007 ◽  
Vol 342-343 ◽  
pp. 737-740
Author(s):  
Hun Sik Kim ◽  
Byung Hyun Park ◽  
Yun Seok Chae ◽  
Jin San Yoon ◽  
Hyoung Joon Jin

In this study, poly(ε-caprolactone) (PCL)/multiwalled carbon nanotube (MWCNT) composites with different contents of MWCNTs were successfully prepared by solution compounding, a method which could make them good competitors for commodity materials such as general purpose plastics, while allowing them to keep their complete biodegradability. For the homogeneous dispersion of the MWCNTs in the polymer matrix, oxygen-containing groups were introduced on their surface. The mechanical properties of the PCL/MWCNT composites were effectively increased due to the incorporation of the MWCNTs. The composites were characterized using scanning electron microscopy, in order to obtain information on the dispersion of the MWCNTs in the polymeric matrix. In the case of the composites containing 2.0 wt% of MWCNTs in their matrix, the strength and modulus of the composites were increased by 18.4% and 178.4%, respectively. In addition, the dispersion of the MWCNTs in the PCL matrix resulted in a substantial decrease in the electrical resistivity of the composites as the MWCNT loading was increased from 0 to 2.0 wt%.

2011 ◽  
Vol 50 (1S2) ◽  
pp. 01BJ12 ◽  
Author(s):  
Dukeun Kim ◽  
Mohammad Mahbub Rabbani ◽  
Chang Hyun Ko ◽  
Dae-Geun Nam ◽  
Jeong Hyun Yeum ◽  
...  

2007 ◽  
Vol 124-126 ◽  
pp. 1133-1136 ◽  
Author(s):  
Hun Sik Kim ◽  
Byung Hyun Park ◽  
Jin San Yoon ◽  
Hyoung Joon Jin

Poly(ε-caprolactone)/multiwalled carbon nanotube (PCL/MWCNT) composites with different MWCNT contents were successfully prepared by in situ bulk polymerization, which could make them good competitors for commodity materials such as general purpose plastics, while allowing them to completely retain their biodegradability. The mechanical properties of the PCL/MWCNT composites were effectively increased due to the incorporation of the MWCNTs. The composites were characterized using scanning electron microscopy, in order to obtain information on the dispersion of the MWCNTs in the polymeric matrix. In the case where 0.5 wt% of MWCNTs were dispersed in the matrix, the strength and modulus of the composite increased by 23% and 71%, respectively. In addition, the dispersion of the MWCNTs in the PCL matrix resulted in a substantial decrease in the electrical resistivity of the composites being observed as the MWCNTs loading was increased from 0 wt% to 0.5 wt%.


2006 ◽  
Vol 326-328 ◽  
pp. 1829-1832 ◽  
Author(s):  
Hun Sik Kim ◽  
Byung Hyun Park ◽  
Min Sung Kang ◽  
Jin San Yoon ◽  
Hyoung Joon Jin

Polycarbonate/multiwalled carbon nanotubes (PC/MWNT) nanocomposites with different contents of MWNT were successfully prepared by melt compounding. The mechanical properties of the PC/MWNT nanocomposites were effectively increased due to the incorporation of MWNTs. The composites were characterized using scanning electron microscopy in order to obtain the information on the dispersion of MWNT in the polymeric matrix. In case of 0.3 wt% of MWNT in the matrix, strength and modulus of the composite increased by 30% and 20%, respectively. In addition, the dispersion of MWNTs in the PC matrix resulted in substantial decrease in the electrical resistivity of the composites as the MWNTs loading was increased from 1.0 wt% to 1.5 wt%.


Sign in / Sign up

Export Citation Format

Share Document