Characterization of Polycarbonate/Multiwalled Carbon Nanotube Composites

2006 ◽  
Vol 326-328 ◽  
pp. 1829-1832 ◽  
Author(s):  
Hun Sik Kim ◽  
Byung Hyun Park ◽  
Min Sung Kang ◽  
Jin San Yoon ◽  
Hyoung Joon Jin

Polycarbonate/multiwalled carbon nanotubes (PC/MWNT) nanocomposites with different contents of MWNT were successfully prepared by melt compounding. The mechanical properties of the PC/MWNT nanocomposites were effectively increased due to the incorporation of MWNTs. The composites were characterized using scanning electron microscopy in order to obtain the information on the dispersion of MWNT in the polymeric matrix. In case of 0.3 wt% of MWNT in the matrix, strength and modulus of the composite increased by 30% and 20%, respectively. In addition, the dispersion of MWNTs in the PC matrix resulted in substantial decrease in the electrical resistivity of the composites as the MWNTs loading was increased from 1.0 wt% to 1.5 wt%.

2007 ◽  
Vol 342-343 ◽  
pp. 737-740
Author(s):  
Hun Sik Kim ◽  
Byung Hyun Park ◽  
Yun Seok Chae ◽  
Jin San Yoon ◽  
Hyoung Joon Jin

In this study, poly(ε-caprolactone) (PCL)/multiwalled carbon nanotube (MWCNT) composites with different contents of MWCNTs were successfully prepared by solution compounding, a method which could make them good competitors for commodity materials such as general purpose plastics, while allowing them to keep their complete biodegradability. For the homogeneous dispersion of the MWCNTs in the polymer matrix, oxygen-containing groups were introduced on their surface. The mechanical properties of the PCL/MWCNT composites were effectively increased due to the incorporation of the MWCNTs. The composites were characterized using scanning electron microscopy, in order to obtain information on the dispersion of the MWCNTs in the polymeric matrix. In the case of the composites containing 2.0 wt% of MWCNTs in their matrix, the strength and modulus of the composites were increased by 18.4% and 178.4%, respectively. In addition, the dispersion of the MWCNTs in the PCL matrix resulted in a substantial decrease in the electrical resistivity of the composites as the MWCNT loading was increased from 0 to 2.0 wt%.


2014 ◽  
Vol 983 ◽  
pp. 94-98 ◽  
Author(s):  
Li Jun Wang ◽  
Jian Hui Qiu ◽  
Eiichi Sakai

The melting mixing was applied in the preparation of Multiwalled carbon nanotubes/Polycarbonate (MWCNTs/PC) nanocomposites. MWCNTs/PC nanocomposites with different MWCNTs contents were prepared under different injection conditions. The mechanical property of nanocomposites was comparatively investigated. The results demonstrated that: the tensile property of the nanocomposites was slightly improved by MWCNTs content increasing; but as the MWCNTs contents went on to increase to 10wt%, the tensile strength and bending strength were obviously decreased about 35% and 47%, respectively, but the impact strength and hardness were increased. The center hardness of MWCNTs/PC nanocomposites was greater than the surface hardness. Besides, the changes on the mechanical properties of the nanocomposites were studies by changing the injection conditions. By Scanning Electron Microscopy (SEM) observation, the microstructure and morphology of nanocomposites were analyzed, revealing that the center of the nanocomposite distributed more MWNTs, and the injection conditions would affect the MWNTs’ dispersion in the matrix and the interfacial interaction between MWCNTs and PC.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
O. Rodríguez-Uicab ◽  
A. May-Pat ◽  
F. Avilés ◽  
P. Toro ◽  
M. Yazdani-Pedram

Multiwalled carbon nanotube (MWCNT)/polyethylene terephthalate (PET) composites were prepared by three processing methods: direct extrusion (DE), melt compounding followed by extrusion (MCE), and dispersion of the MWCNTs in a solvent by sonication followed by extrusion (SSE). The mechanical properties of the MWCNT/PET composites processed by MCE increased with 0.1 wt% MWCNTs with respect to the neat PET. The electrical percolation threshold of MWCNT/PET composites processed by DE and MCE was ~1 wt% and the conductivity was higher for composites processed by MCE. Raman spectroscopy and scanning electron microscopy showed that mixing the MWCNTs by melt compounding before extruding yields better dispersion of the MWCNTs within the PET matrix. The processing method assisted by a solvent resulted in matrix plasticization.


2014 ◽  
Vol 704 ◽  
pp. 32-38
Author(s):  
Lanka Rasidhar ◽  
A. Rama Krishna ◽  
Ch. Srinivasa Rao ◽  
K. Vijaya Lakshmi

In the present investigation, microstructure and mechanical properties of nanocomposites fabricated via stir casting were evaluated. The composites were based on Al (99.7) reinforced with ilmenite nanoparticles. The characterization of the nanoparticles and nanocomposites was investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) facilities. Microstructure of specimens show that reasonable distribution of FeTiO3 nanoparticles in the matrix, secondary phase FeAl3 observed in the microstructure. Ultimate tensile strength and compression tests were carried out in order to identify the mechanical properties. The hardness of the composites is enhanced with the addition of nanoparticles. The optimum value for ultimate tensile and compression strength are obtained with the addition of 3 % ilmenite nanoparticles. Ductile fracture in tensile fractured samples was observed by fractrography examination.


2011 ◽  
Vol 197-198 ◽  
pp. 1100-1103
Author(s):  
Jian Li

A polyurethane/clay (PU/clay) composite was synthesized. The microstructure of the composite was examined by scanning electron microscopy. The impact properties of the composite were characterized by impact testing. The study on the structure of the composite showed that clays could be dispersed in the polymer matrix well apart from a few of clusters. The results from mechanical analysis indicated that the impact properties of the composite were increased greatly in comparison with pure polyurethane. The investigation on the mechanical properties showed that the impact strength could be obviously increased by adding 20 wt% (by weight) clay to the matrix.


Author(s):  
Teresa D. Golden ◽  
Jeerapan Tientong ◽  
Adel M.A. Mohamed

Electrodeposition of only molybdenum onto substrates is difficult, therefore molybdenum is typically deposited with iron-based alloys such as nickel. The deposition of such alloys is known as an induced codeposition mechanism. The electrodeposition of nickel-molybdenum alloys using alkaline plating solutions is covered in this chapter. The mechanism for deposition of nickel-molybdenum is reviewed, as well as the influence of the plating parameters on the coatings. Characterization of the coatings by scanning electron microscopy and x-ray diffraction is discussed and how deposition parameters affect morphology, composition, and crystallite size. Nickel-molybdenum alloys offer enhanced corrosion protection and mechanical properties as coatings onto various substrates. A survey of the resulting hardness and Young's modulus is presented for several research studies. Corrosion parameters for several studies are also compared and show the percentage of molybdenum in the coatings affects these values.


Sign in / Sign up

Export Citation Format

Share Document