Mullite Fiber Reinforced Alumina Ceramic Matrix Composites

2008 ◽  
Vol 368-372 ◽  
pp. 710-712 ◽  
Author(s):  
Zhi Wang ◽  
Guo Pu Shi ◽  
Xiang Sun ◽  
Xian Qin Hou

Mullite fiber reinforced alumina ceramic matrix composites (MFACC) were prepared using CaO-MgO-SiO2 (CMS) and TiO2 as sintering aids. The effects of the contents of sintering aids and mullite fiber on the density and sintering temperature of MFACC are studied. The results showed that when the CMS content is 8.0% and the TiO2 content is 1.0%, the density of the as-sintered MFACC is 98.9%. When the mullite fiber content is 15.0% and the sintering temperature is 1450 °C, the flexural strength of the resultant composite increases to 504.5MPa, 70.7% higher than the original matrix, and the relative density of the composites reaches 98.4%. The reinforcement mechanisms are fibers pull-out and sticky point.

Author(s):  
Andi Udayakumar ◽  
M. Rizvan Basha ◽  
Sarabjit Singh ◽  
Sweety Kumari ◽  
V. V. Bhanu Prasad

1996 ◽  
Vol 63 (2) ◽  
pp. 321-326 ◽  
Author(s):  
F. Hild ◽  
P.-L. Larsson ◽  
F. A. Leckie

Fiber pull-out is one of the fracture features of fiber-reinforced ceramic matrix composites. The onset of this mechanism is predicted by using continuum damage mechanics, and corresponds to a localization of deformation. After deriving two damage models from a uniaxial bundle approach, different configurations are analyzed through numerical methods. For one model some very simple criteria can be derived, whereas for the second one none of these criteria can be derived and the general criterion of localization must be used.


Sign in / Sign up

Export Citation Format

Share Document